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FOCUS ON...
No. 14

Michel Bataille

Solutions to Exercises from Focus On... No. 6 – 11

From Focus On... No. 6

(a) Let A,B,C,D be four points in the plane such that AB = CD and M,N be
the midpoints of AD,BC, respectively. Show that the angle MN makes with the
line AB equals the angle it makes with the line CD.

Since AB = CD, there exists a unique glide reflection g such that g(A) = D and
g(B) = C (g may reduce to a reflection). The axis of g is the line MN (since the
axis passes through the midpoint of any segment joining a point to its image). It
follows that g = r ◦ t = t ◦ r where r denotes the reflection in MN and t is a

translation whose vector −→u , if not
−→
0 , is parallel to MN .

Let C ′ = t−1(C) and D′ = t−1(D). We have

r(C ′) = r ◦ t−1(C) = (t ◦ r)−1(C) = g−1(C) = B

and similarly, r(D′) = A. Thus, the line MN is an axis of symmetry of the lines
AB and C ′D′ and, as such, makes the same angle with each of them. The result
follows since CD is parallel to C ′D′.

(b) If ABC is a triangle, find the axis and the vector of the glide reflection
rAC ◦ rBC ◦ rAB where rXY denotes the reflection in the line XY .

The reader is referred to problem 3789, solution 1 [2013 : 427].

From Focus On... No. 7

(a) Consider the sums Sn(m) =
n∑
i=1

wm
i

D′(wi)
where D(x) =

n∏
i=1

(x−wi) and suppose

wi 6= 0 for i = 1, 2, . . . , n. Calculate Sn(−1) and Sn(−2).
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Recall the equality 1
D(x) =

∑n
i=1

1
D′(wi)

· 1
x−wi

. We readily deduce

Sn(−1) =
n∑
i=1

1

wiD′(wi)
= − 1

D(0)
=

(−1)n+1

w1 · w2 · · · · · wn
.

Now, differentiating both sides of the equality, we obtain

D′(x)

(D(x))2
=

n∑
i=1

1

(x− wi)2D′(wi)

so that

Sn(−2) =
n∑
i=1

1

w2
iD
′(wi)

=
D′(0)

(D(0))2
.

Since (D(0))2 = (w1 · w2 · · · · · wn)2 and D′(0) = (−1)n−1
n∑
i=1

Ç
n∏

k=1,k 6=i
wk

å
, we

finally get

Sn(−2) =
(−1)n−1

w1 · w2 · · · · · wn
·
n∑
i=1

1

wi
.

(b) Using the decomposition of 1
xn−1 , rework problem 2657 [2001 : 336 ; 2002 :

401], that is prove that

2k−1∑
n=0

tan

Å
(4n− 1)π + (−1)n4θ

8k

ã
=

2k

1 + (−1)k+1
√

2 sin θ
.

We recall the decomposition

1

xn − 1
=

1

n

n−1∑
j=0

1

ωjx− 1
, (1)

where ω = exp(−2πi/n). We shall also make use of the following formula

2i

Å
1

eiα + 1
− 1

eiβ + 1

ã
= tan

α

2
− tan

β

2
, (2)

which is easily verified (note that tan t = −i · e
2it−1
e2it+1 = 2i

e2it+1 − i).

Returning to the problem, we set z1 = − exp
Ä
i(θ−3π/4)

k

ä
, z2 = − exp

Ä
i(θ−π/4)

k

ä
and first suppose that k is even. Since

1

1−
√

2 sin θ
=

i

ei(θ−3π/4) − 1
− i

ei(θ−π/4) − 1
,

(1) yields

2k

1−
√

2 sin θ
= 2ki

Å
1

zk1 − 1
− 1

zk2 − 1

ã
= 2i

k−1∑
j=0

Å
1

ωjz1 − 1
− 1

ωjz2 − 1

ã
.
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(Here ω denotes exp (−2πi/k).) But, with the help of (2), we obtain

2i

Å
1

ωjz1 − 1
− 1

ωjz2 − 1

ã
= tan

Å
θ − π/4− 2πj

2k

ã
+ tan

Å
3π/4− θ + 2πj

2k

ã
= tan

Å
4θ + π(4(2(k − j))− 1)

8k

ã
+ tan

Å
π(4(2j + 1)− 1)− 4θ

8k

ã
and so

2k

1−
√

2 sin θ
=

2k−1∑
n=0

tan

Å
(4n− 1)π + (−1)n4θ

8k

ã
.

The calculation is similar when k is odd. We have 2k
1+
√
2 sin θ

= 2ki
Ä

1
z2

k−1 −
1

z1
k−1

ä
.

As above, we deduce that

2k

1 +
√

2 sin θ
=
k−1∑
j=0

Å
tan

Å
π(4(2(k − j) + 1)− 1)− 4θ

8k

ã
+ tan

Å
4θ + π(4(2j)− 1)

8k

ãã
and the result follows.

(c) Problem 3140 [2006 : 238, 240 ; 2007 : 243] required a proof of the inequality
n∏
k=1

a
1
pk

k < 1 where n ≥ 2, a1, . . . , an > 0 and pk =
∏
j 6=k

(aj−ak). Find an alternative

to Walther Janous’s featured proof.

We mimic the method developed in the column and omit the details.

Let

A(x) =
1

(x+ a1)(x+ a2) · · · (x+ an)

whose decomposition into partial fractions is

A(x) =
n∑
i=1

1

pi
· 1

x+ ai
.

Using
n∑
i=1

1
pi

= pp(xA(x)) = 0, we easily obtain

∫ ∞
0

A(x) dx = −
n∑
i=1

1

pi
ln(ai).

Since
∫∞
0
A(x) dx > 0, we see that

n∑
i=1

1
pi

ln(ai) must be negative and the desired

inequality follows.
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From Focus On... No. 8

1. Two circles, Γ with diameter AB, and ∆ with centre A, intersect at points C
and D. The point M (distinct from C and D) lies on ∆. The lines BM,CM and
DM intersect Γ again at N,P and Q, respectively. Show that MN is the geometric
mean of NC and ND.

This is question 2 of 2666. We keep the notations and figure of question 1 solved in
Focus On... No 8. In particular, I denotes the inversion with centre M exchanging
A and R. Since N = I(B) and C = I(P ), we have

NC =
|p|BP

MB ·MP
=
MB ·MN ·BP
MB ·MP

= MN · BP
MP

.

In a similar way, ND = MN · BQMQ . Now, because MPBQ is a parallelogram,

we have BP = MQ and BQ = MP . It follows that NC
MN = MN

ND and therefore

MN =
√
NC ·ND.

2. Let A,B,C, and D be points on a circle with centre O. If AB is not parallel
to CD and U, V are the circumcentres of ∆APB,∆CPD, prove that OUPV is a
parallelogram.

Let I denote the inversion with centre P whose power is the power of P with
respect to the circle Γ passing through A,B,C,D. Since I(A) = C and I(B) = D,
I transforms the circle (APB) into the line CD. It follows that PU is perpendicular
to CD and so is parallel to the perpendicular bisector OV of CD. Similarly, PV
is parallel to OU . Thus, OUPV is a parallelogram (note that O,U, P, V are not
collinear since otherwise AB and CD would be parallel).

From Focus On... No. 10

The following limits were to be evaluated in 3604 and in 3642 :

lim
n→∞

1∫
0

(x2 − x− 2)n dx

1∫
0

(4x2 − 2x− 2)n dx

and lim
n→∞

1∫
0

(2x2 − 5x− 1)n dx

1∫
0

(x2 − 4x− 1)n dx

.
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It is easily checked that each of the functions x 7→ −x2 + x + 2 and x 7→ −4x2 +
2x+ 2 is positive and attains its maximum on [0, 1]. From the case (c) of the last
paragraph of the column, we deduce∫ 1

0

(−x2 + x+ 2)n dx ∼
…
π

n

Å
2 +

1

4

ãn+ 1
2

and∫ 1

0

(−4x2 + 2x+ 2)n dx ∼
…

π

4n

Å
2 +

4

16

ãn+ 1
2

as n→∞. It readily follows that the first required limit is 2.

Each of the functions x 7→ −2x2 + 5x + 1 and x 7→ −x2 + 4x + 1 is positive and
strictly increasing on [0, 1]. From the case (a) this time, we obtain∫ 1

0

(−2x2 + 5x+ 1)n dx ∼ (−2 + 5 + 1)n+1

n(2 · (−2) + 5)
and∫ 1

0

(−x2 + 4x+ 1)n dx ∼ (1 + 4− 1)n+1

n(2 · (−1) + 4)

as n→∞. Again, the desired limit is 2.

From Focus On... No. 11

1. Find ρ, α and ` > 0 such that lim
n→∞

ρnnα
n∑
k=1

5n

n
(
2n−1
n

) = `.

Let an = 5n

n(2n−1
n )

. A short calculation gives an+1

an
= 5n

2(2n+1) and it follows that

lim
n→∞

an+1

an
= 5

4 > 1. From the first of the three results of the column,

n∑
k=1

ak ∼
5/4

5/4− 1
· an = 5an as n→∞.

With the help of Stirling’s formula n! ∼ nne−n
√

2πn, we find

n

Ç
2n− 1

n

å
=
n

2
· (2n)!

(n!)2
∼ 4n ·

√
n

2
√
π

so that an ∼
(
5
4

)n · 2√π√
n

and

ρnnα
n∑
k=1

ak ∼ 10
√
π

Å
5ρ

4

ãn
· nα− 1

2

as n→∞.

We can now conclude : ρnnα
n∑
k=1

ak has a finite nonzero limit as n → ∞ if and

only if ρ = 4
5 and α = 1

2 , in which case the limit is ` = 10
√
π.
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2. Find α for the following sequence to be convergentÜ
n+1∑
k=1

k! csc(π/2k)

n∑
k=1

k! csc(π/2k)
− nα

ê
n≥1

.

What is its limit in that case ?

Let an = n! csc(π/2n). We easily obtain

an+1

an
= 2(n+ 1) cos(π/2n+1)

and deduce that an+1

an
∼ 2n as n→∞. Furthermore,

lim
n→∞

Å
an+1

an
− 2n

ã
= lim
n→∞

(
2 cos(π/2n+1)− 2n

(
1− cos(π/2n+1)

))
= 2.

Note that lim
n→∞

(
2n
(
1− cos(π/2n+1)

))
= 0 since 1 − cos(π/2n+1) ∼ π2

22n+3 as
n→∞.

From the third result proved in the column, we see that the given sequence is
convergent when α = 2 and its limit then is 2.

A lot of information out of nothing

Mathematician R said the following to mathematicians P and S : “I thought of
two natural numbers. They are each greater than 1 and their sum is less than
100. I will secretly tell mathematician P their product and I will secretly tell
mathematician S their sum.” He did just that and asked mathematicians P and
S to guess the numbers. The following dialogue took place :

P : I cannot tell what the numbers are.
S : I knew you couldn’t.
P : Then I know what they are.
S : Then so do I.

Can you guess the numbers ?

Originally from article “Many bits out of nothing” by S. Artemov, Y. Gimatov
and V. Fedorov, Kvant 1977 (3).
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