CONTEST CORNER

SOLUTIONS

CC86. A hexagon, H, is inscribed in a circle, and consists of three segments of length 1 and three segments of length 3. Each side of length 1 is between two sides of length 3 and, similarly, each side of length 3 is between two sides of length 1. Find the area of H.

Originally 1998 W.J. Blundon Mathematics Contest, problem 10.

We received five correct submissions. We present the solution by John Heuver.

Consider a hexagon $H = ABCDEF$ with $AB = CD = EF = 1$ and $BC = DE = FA = 3$. Let the diagonals AD and BE intersect at X. Since $BE \parallel AF$ and $AD \parallel FE$, it follows that the quadrilateral $AFEX$ is a parallelogram with $AX = FE = 1$ and $AF =XE = 3$. Similarly, $BCDX$ is a parallelogram with $CD = BX = 1$ and $BC = XD = 3$.

Thus, both triangles ABX and DEX are equilateral with sides of length 1 and 3, respectively. Since their altitudes are correspondingly $\frac{\sqrt{3}}{2}$ and $\frac{3\sqrt{3}}{2}$, the area of the trapezoid $ABEF = \frac{1}{2} \cdot \frac{\sqrt{3}}{2}(4 + 3) = \frac{7}{4}\sqrt{3}$ and the area of the trapezoid $BCDE = \frac{1}{2} \cdot \frac{3\sqrt{3}}{2}(4 + 1) = \frac{15}{4}\sqrt{3}$.

This lets us conclude that the area of the hexagon H is $\frac{11}{2}\sqrt{3}$.

CC87. Let $ABCDE$ be a regular pentagon with each side of length 1. The length of BE is θ and the angle FEA is α, where F is the intersection of AC and BE. Find θ and $\cos \alpha$.

Originally 2004 W.J. Blundon Mathematics Contest, problem 10.

We received seven correct submissions. We present the solution by Matei Coiculescu, slightly modified by the editor.
Since the pentagon $ABCDE$ is regular, the internal angles all equal $\frac{3 \cdot 180^\circ}{5} = 108^\circ$, and $1 = AB = EA$. Since $EA = AB$ the triangle ABE is isosceles, which implies that

$$\alpha = \angle FEA = \angle BEA = \frac{1}{2}(180^\circ - 108^\circ) = 36^\circ.$$

Similarly, triangle ABC is isosceles, so that $\angle BAC = \angle BAF = 36^\circ = \alpha$. Thus $\angle EFA = 2\alpha = 72^\circ$ (since it is the external angle of $\triangle ABF$ at F). Since the triangles FAB and ABE are similar (having equal corresponding angles), we have $\frac{FB}{AB} = \frac{AE}{BE}$, or

$$FB = \frac{1}{\theta}.$$

Observe that $\angle FAE = \angle BAE - \angle BAF = 108^\circ - 36^\circ = 72^\circ = \angle AFE$. Thus, $\triangle EAF$ is isosceles, so that $1 = EA = EF$. Consequently, since $EB = EF + FB$,

$$\theta = 1 + \frac{1}{\theta}.$$

The positive solution of this equation is

$$\theta = \frac{1 + \sqrt{5}}{2}.$$

Finally, the Law of Cosines applied to α in triangle ABE gives

$$\cos \alpha = \frac{1 + \theta^2 - 1}{2\theta} = \frac{\theta}{2}.$$

In summary,

$$\theta = \frac{1 + \sqrt{5}}{2} \text{ and } \cos \alpha = \frac{1 + \sqrt{5}}{4}.$$

CC88. A cat is located at C, 60 metres directly west of a mouse located at M. The mouse is trying to escape by running at 7 m/s in a fixed direction. The cat, an expert in geometry, runs at 13 m/s in a suitable straight line path that will intercept the mouse as quickly as possible. Suppose that the mouse is intercepted after running a distance of d_1 metres in a particular direction. If the mouse had been intercepted after it had run a distance of d_2 metres in the opposite direction, show that $d_1 + d_2 \geq 14\sqrt{30}$.

Originally 2007 Canadian Open Mathematics Challenge, problem B4c).

We received two correct submissions. We present the solution by Titu Zvonaru and Neculai Stanciu.

Let A be the point where the cat catches the mouse after the mouse has run the distance d_1, and let B be the point where the cat catches the mouse after the mouse has run the distance d_2.
From M to A, the mouse runs for $\frac{d_1}{7}$ seconds, and from M to B, the mouse runs for $\frac{d_2}{7}$ seconds. It follows that the segment CA has length

$$|CA| = \frac{13d_1}{7}$$

and the segment CB has length

$$|CB| = \frac{13d_2}{7}.$$

By Stewart’s theorem, we have that

$$|CA|^2 \cdot |BM| - |CM|^2 \cdot |AB| + |CB|^2 \cdot |AM| = |AM| \cdot |BM| \cdot |AB|. \tag{3}$$

Then by (1) and (2), and since $|CM| = 60$, $|AM| = d_1$, $|BM| = d_2$, and $|AB| = d_1 + d_2$, (3) becomes

$$\frac{169d_1^2d_2}{49} - 3600(d_1 + d_2) + \frac{169d_1^2d_2^2}{49} = d_1 \cdot d_2 \cdot (d_1 + d_2)$$

and we have

$$120d_1d_2(d_1 + d_2) = 49 \cdot 3600(d_1 + d_2).$$

Therefore,

$$d_1d_2 = 49 \cdot 30. \tag{4}$$

Now by the inequality of arithmetic and geometric means,

$$d_1 + d_2 \geq 2\sqrt{d_1d_2}$$

where $\sqrt{d_1d_2} = \sqrt{49 \cdot 30}$ by (4), so that

$$d_1 + d_2 \geq 14\sqrt{30}$$

as required.

CC89. Let $f : \mathbb{Z} \to \mathbb{Z}^+$ be a function, and define $h : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}^+$ by $h(x, y) = \gcd(f(x), f(y))$. If $h(x, y)$ is a two-variable polynomial in x and y, prove that it must be constant.

Originally 2014 Sun Life Financial Repêchage Competition, problem 1.

No solutions to this problem were received.

CC90. For a given $k > 0$, $n \geq 2k > 0$, consider the square R in the plane consisting of all points (x, y) with $0 \leq x, y \leq n$. Color each point in R gray if $\frac{x}{k} \leq x + y$, and blue otherwise. Find the area of the gray region in terms of n and k.

Originally question 9 from the 2001 Stanford Math Tournament, Calculus.

Copyright © Canadian Mathematical Society, 2015
We present the solution by Digby Smith.

Suppose $0 \leq y \leq k$. Then, $\frac{xy}{k} \leq \frac{xk}{k} = x \leq x + y$. That is, the portion of the square R where $0 \leq y \leq k$ is coloured gray.

Similarly, suppose $0 \leq x \leq k$. Then, $\frac{xy}{k} \leq \frac{ky}{k} = y \leq x + y$. That is the portion of the square R where $0 \leq x \leq k$ is coloured gray.

The next step is to determine the area of the blue region, A_b, contained in the portion of the square R where $k < x$ and $y \leq n$. To start with, let

$$a = \frac{kn}{n-k} \text{ and } n = \frac{kx}{x-k}.$$

Solving for x, we have

$$kx = n(x - k) \implies kn = x(n - k) \implies x = \frac{kn}{n-k},$$

so that $x = a$. Similarly, let $\frac{ky}{y-k} = n$. Then solving for y, we have that $y = a$. The curve $y = \frac{kx}{x-k}$ intersects the line $y = n$ at the point $P = (a, n)$ and intersects the line $x = n$ at the point $Q = (n, a)$. We now make use of some basic properties. First, we have

$$(n - k)(n - a) = n(n - 2k),$$

since

$$(n - k)(n - a) = (n - k)\left(n - \left(\frac{kn}{n-k}\right)\right)$$
$$= (n - k)n \left(\frac{n - k - k}{n-k}\right)$$
$$= n(n - 2k).$$

Second, we have

$$\ln(n - k) - \ln(a - k) = 2 \ln\left(\frac{n-k}{k}\right),$$

since

$$\ln(n - k) - \ln(a - k) = \ln(n - k) - \ln\left(\frac{kn}{n - k} - k\right)$$
$$= \ln(n - k) - \ln\left(\frac{kn - k + k^2}{n-k}\right)$$
$$= \ln(n - k) - 2\ln(k) + \ln(n - k)$$
$$= 2 \ln\left(\frac{n-k}{k}\right).$$

Furthermore, the following basic inequality holds:

$$k < a \leq n.$$

Crux Mathematicorum, Vol. 40(8), October 2014
Proof. Starting with $2k \leq n$, it follows that $2kn \leq n^2$ and $kn \leq n^2 - kn$, so that $kn \leq n(n-k)$. Since $n > k$, it follows that

$$\frac{kn}{n-k} \leq n$$

with $a \leq n$. Next, starting with $k^2 > 0$, we have $kn - k^2 < kn$ and $k(n-k) < kn$. Since $n > k$, it follows that

$$k < \frac{kn}{n-k}$$

with $k < a$. That is, $k < a \leq n$.

Now suppose that $k < x$, $y \leq n$. Then if $x + y < \frac{xy}{x}$, we have

$$kx < xy - ky = (x-k)y$$

making

$$\frac{kx}{x-k} < y \quad \text{and also} \quad \frac{ky}{y-k} < x.$$

Applying (7), it follows that the points P and Q are contained in the portion of the square R where $k < x$, $y \leq n$. Thus the portion of the square R coloured blue is given by

$$\frac{kx}{x-k} \leq y \leq n$$

with $a \leq x \leq n$. If $a = n$ (when $n = 2k$), then $A_b = 0$ with the area of the gray region, A_g, being $A_g = n^2$. Otherwise, if $a \neq n$, then

$$A_b = \int_a^n \left(n - \frac{kx}{x-k} \right) dx$$

$$= \int_a^n n - k \left(1 + \frac{k}{x-k} \right) dx$$

$$= \int_a^n (n-k) - k^2 \left(\frac{1}{x-k} \right) dx$$

$$= (n-k)(n-a) - k^2(\ln(n-k) - \ln(a-k)).$$

so that

$$A_b = n(n-2k) - 2k^2 \ln \left(\frac{n-k}{k} \right)$$

by (5) and (6). It follows that

$$A_g = n^2 - A_b = 2nk + 2k^2 \ln \left(\frac{n-k}{k} \right),$$

so that the area of the area of the gray region in terms of n and k is

$$2nk + 2k^2 \ln \left(\frac{n-k}{k} \right).$$