Volume 40, number 3: March / Mars 2014

Published by:

Canadian Mathematical Society
Société mathématique du Canada
209 - 1725 St. Laurent Blvd.
Ottawa, ON K1G 3V4, Canada
Fax/Téléc. : 613 733 8994

©CANADIAN MATHEMATICAL SOCIETY 2015. ALL RIGHTS RESERVED.

SYNOPSIS

95 Editorial Kseniya Garaschuk
96 The Contest Corner: No. 23 Robert Bilinski
 96 The Contest Corner Problems: CC111–CC115
 98 The Contest Corner Solutions: CC61–CC65
102 The Olympiad Corner: No. 321 Nicolae Strungaru
 102 The Olympiad Corner Problems: OC171–OC175
 104 The Olympiad Corner Solutions: OC111–OC115
110 Book Reviews Robert Bilinski
112 Focus On . . . : No. 11 Michel Bataille
116 Apples, Oranges, and Bananas Warut Suksompong
120 Problems: 3921–3930
125 Solutions: 3821–3830
137 Solvers and proposers index
This month’s “free sample” is:

3924. Proposed by Michel Bataille.
Let \(\{F_k\} \) be the Fibonacci sequence defined by \(F_0 = 0, F_1 = 1 \) and \(F_{k+1} = F_k + F_{k-1} \) for every positive integer \(k \). If \(m \) and \(n \) are positive integers with \(m \) odd and \(n \) not a multiple of 3, prove that \(5F_m^2 - 3 \) divides \(5F_{mn}^2 + 3(-1)^n \).