39: No 4 April / Avril 2013

Published by:
Canadian Mathematical Society
Société mathématique du Canada
209 - 1725 St. Laurent Blvd.
Ottawa, ON K1G 3V4, Canada
Fax/Téléc. : 613 733 8994

©CANADIAN MATHEMATICAL SOCIETY 2014. ALL RIGHTS RESERVED.

SYNOPSIS

159 The Contest Corner: No. 14 Shawn Godin

159 The Contest Corner Problems: CC66–CC70

161 The Contest Corner Solutions: CC16–CC20

166 The Olympiad Corner: No. 312 Nicolae Strungaru

166 The Olympiad Corner Problems: OC126–OC130

168 The Olympiad Corner Solutions: OC66–OC70

171 Book Reviews John McLoughlin

171 Learning Modern Algebra: From Early Attempts
to Prove Fermat’s Last Theorem
by Al Cuoco and Joseph J. Rotman

171 Beyond the Quadratic Formula
by Ron Irving

174 Problem Solver’s Toolkit: No. 5 J. Chris Fisher

This is the second of a four part series by Crux editor J. Chris Fisher. The
goal of the series is to study Harmonic sets. This instalment looks at quadrangles and quadrilaterals and introduces Harmonic sets and Harmonic conjugates.
This is the first of a three part series of articles investigating the centroid of vertices, centroid of perimeter and centroid of area for a plane noncrossed quadrangle. In this first installment, it is shown that the centroid of vertices, centroid of area and the point of intersection of the diagonals of a convex quadrilateral, not a parallelogram, are collinear.

Let x, y, z be positive real numbers. Prove that

$$\frac{x^2}{z^3(zx + y^2)} + \frac{y^2}{x^3(xy + z^2)} + \frac{z^2}{y^2(yz + x^2)} \geq \frac{3}{2xyz}.$$