The Barycentric Equation of a Line

Introduction

Barycentric coordinates relative to a triangle ABC constitute a common and convenient tool in plane geometry. A point P has coordinates (x,y,z) (with $x+y+z \neq 0$) if P is the barycentre of A,B,C with respective masses x,y,z, that is, if $(x+y+z)\overrightarrow{MP} = x\overrightarrow{MA} + y\overrightarrow{MB} + z\overrightarrow{MC}$ for any point M. These coordinates are also called areal coordinates because x,y,z are proportional to the signed areas $[PBC],[PCA],[PAB]$, a nice geometric interpretation of x,y,z. In this context, the equation of a line is of the form $ux + vy + wz = 0$ for some real numbers u,v,w, not all zero, and this leads to systematic ways of solving problems of collinearity or concurrency. Stepping back, we would like to give a geometric look to the coefficients u,v,w and offer some applications.

Two simple results about u,v,w

In this paragraph, we assume that u,v,w are not zero, leaving these special cases to the reader. Let ℓ be the line with equation $ux + vy + wz = 0$ and let ℓ intersect the sidelines BC,CA,AB at D,E,F respectively. Then we have

$$\frac{v}{w} = -\frac{BD}{DC}, \quad \frac{w}{u} = -\frac{CE}{EA}, \quad \frac{u}{v} = -\frac{AF}{FB}$$ \hspace{1cm} (1)

and, if A',B',C' are the orthogonal projections of A,B,C onto ℓ,

$$\frac{AA'}{u} = \frac{BB'}{v} = \frac{CC'}{w}$$ \hspace{1cm} (2)

where all distances are signed.

For example, if $(0,\beta,\gamma)$ are the coordinates of D, then $v\beta + w\gamma = 0$ and $\beta \overrightarrow{DB} + \gamma \overrightarrow{DC} = \overrightarrow{0}$, hence $w \overrightarrow{DB} = v \overrightarrow{DC}$. The first equality in (1) follows (alternatively, one can observe that $v[DCA] + w[DAB] = 0$ and $\frac{[DAB]}{[DCA]} = \frac{BD}{DC}$). As for (2), the homothety with centre D transforming B into C transforms B' into C', hence $\overrightarrow{BB'} = \overrightarrow{CC'}$. Similarly, $\frac{EC}{EA} = \frac{CC'}{AA'}$ and $\frac{FA}{FB} = \frac{AA'}{BB'}$ and (2) follows with the help of (1).

Another solution to a 2006 problem

The equalities (1) directly give Menelaus’s relation for the transversal ℓ: indeed, $\frac{BD}{DC} \cdot \frac{CE}{EA} \cdot \frac{AF}{FB} = -\frac{v}{w} \cdot \frac{w}{u} \cdot \frac{u}{v} = -1$. Not surprisingly, the barycentric
equation of a line can be a shortcut avoiding the use of Menelaus’s theorem. For example, consider Virgil Nicula’s problem 3156 ([2006 : 305 ; 2007 : 312]):

Let \(\Gamma \) be the circumcircle of \(\Delta ABC \). Let \(M \) be an interior point on the side \(AB \), and let \(N \) be an interior point on the side \(AC \). Let \(D \) be an intersection point of \(MN \) with \(\Gamma \). Prove that

\[
\begin{vmatrix}
MB & AC & NC & AB \\
MA & DB & NA & DC
\end{vmatrix}
= \frac{BC}{DA}.
\]

(3)

In the featured solution, Peter Y. Woo applies Menelaus’s theorem twice. Here is a shorter proof: From (1), the equation of the line \(MN \) can be written as \(x = \frac{MB}{MA} y + \frac{NC}{NA} z \) (not signed distances). Since the signed areas \([DCA]\) and \([DAB]\) are of opposite signs, we obtain \([DBC] = \left| \frac{MB}{MA} [DCA] - \frac{NC}{NA} [DAB] \right| \) if areas are no longer signed. Because \(A, B, C, D \) are concylic, we have \(\sin A = \sin \angle BDC, \sin B = \sin \angle CDA, \sin C = \sin \angle ADB \). It follows that \(DB \cdot DC \sin A = \frac{MB}{MA} DA \cdot DC \sin B - \frac{NC}{NA} DA \cdot DB \sin C \) which, using the proportionality of \(BC, CA, AB \) and \(\sin A, \sin B, \sin C \), easily leads to (3).

A property of the tangents to the circumcircle

To illustrate (2), we prove the following:

Let \(\ell \) be a tangent to the circumcircle \(\Gamma \) of \(\Delta ABC \) and let \(BC = a, CA = b, AB = c, d_a = d(A, \ell), d_b = d(B, \ell), d_c = d(C, \ell) \). Then, one of the numbers \(a \sqrt{d_a}, b \sqrt{d_b}, c \sqrt{d_c} \) is the sum of the other two.

Proof. Since the equation of \(\Gamma \) is \(a^2 y z + b^2 z x + c^2 x y = 0 \), the equation of \(\ell \) is \(x(b^2 z_0 + c^2 y_0) + y(c^2 x_0 + a^2 z_0) + z(a^2 y_0 + b^2 x_0) = 0 \) where \((x_0, y_0, z_0)\) are the coordinates of the point of tangency. Expressing that the coefficients of \(x, y, z \) are proportional to \(d_a, d_b, d_c \) (from (2)) and solving for \(x_0, y_0, z_0 \) give

\[
x_0 : y_0 : z_0 = a^2(c^2 d_c + b^2 d_b - a^2 d_a) : b^2(a^2 d_a + c^2 d_c - b^2 d_b) : c^2(b^2 d_b + a^2 d_a - c^2 d_c).
\]

Now, \(d_a x_0 + d_b y_0 + d_c z_0 = 0 \) leads to

\[
a^4 d_a^2 + b^4 d_b^2 + c^4 d_c^2 = 2a^2 b^2 d_a d_b + 2b^2 c^2 d_b d_c + 2c^2 a^2 d_c d_a,
\]

that is,

\[
(a \sqrt{d_a} + b \sqrt{d_b} + c \sqrt{d_c})(a \sqrt{d_a} + b \sqrt{d_b} - c \sqrt{d_c})
\times (b \sqrt{d_b} + c \sqrt{d_c} - a \sqrt{d_a})(c \sqrt{d_c} + a \sqrt{d_a} - b \sqrt{d_b}) = 0
\]

and the result follows. A synthetic proof of this (perhaps new) property would be interesting.

An exercise

To conclude, we propose the following problem to the reader: Let \(E \) and \(F \) be points on the sides \(AC \) and \(AB \), respectively. Show that \([PBC]\) is the geometric mean of \([PAB]\) and \([PCA]\) for some point \(P \) on the line segment \(EF \) if and only if \(AE \cdot AF \geq 4 CE \cdot BF \).