38: No 6 June / Juin 2012

Published by:
Canadian Mathematical Society
Société mathématique du Canada
209 - 1725 St. Laurent Blvd.
Ottawa, ON K1G 3V4, Canada
Fax/Téléc. : 613 733 8994

©CANADIAN MATHEMATICAL SOCIETY 2013. ALL RIGHTS RESERVED.

SYNOPSIS

215 Editorial Shawn Godin

216 Mathematical Mayhem Shawn Godin
 Solutions to Mayhem problems M495–M500 are presented.

222 The Contest Corner: No. 6 Shawn Godin

224 The Olympiad Corner: No. 304 Nicolae Strungaru

224 The Olympiad Corner Problems: OC86–OC90
226 The Olympiad Corner Solutions: OC26–OC30

232 Book Reviews Amar Sodhi

232 A Wealth of Numbers: An Anthology of 500 Years of Popular Mathematics Writing
 Edited by Benjamin Wardhaugh

233 The Irrationals: a Story of the Numbers You Can’t Count On
 by Julian Havil

235 Problem Solvers Toolkit: No. 1 Shawn Godin

 This new column will focus on theorems and methods that will be useful to problem solvers. In this first column, Fermat’s Little Theorem is explored.

238 Recurring Crux Configurations 7 : J. Chris Fisher

 This new, occasionally appearing column, highlights situations that reappear in Crux problems. In this issue problem editor J. Chris Fisher examines triangles which satisfy $B = 2C$.
Des demi cercles avec centres O_1 et O_2 sont tracés à partir des cordes AB et CD d’un certain cercle Γ, ces demi cercles étant tangents au point T. La ligne passant par O_1 et O_2 intersecte Γ aux points E et F. Si $O_1A = a$, $O_2C = b$, $O_1E = x$ et $O_2F = y$, démontrer que $a - b = x - y$.

Semi-circles with centres O_1 and O_2 are drawn on chords AB and CD of a circle Γ such that they are tangent at T. The line through O_1 and O_2 intersects Γ at E and F. If $O_1A = a$, $O_2C = b$, $O_1E = x$ and $O_2F = y$, show that $a - b = x - y$.

This month’s “free sample” is:

3753. Proposed by Abdilkadir Altintaş, mathematics teacher, Emirdağ, Turkey.

Semi-circles with centres O_1 and O_2 are drawn on chords AB and CD of a circle Γ such that they are tangent at T. The line through O_1 and O_2 intersects Γ at E and F. If $O_1A = a$, $O_2C = b$, $O_1E = x$ and $O_2F = y$, show that $a - b = x - y$.

245 Solutions: 3651–3660