SYNOPSIS

123 Mathematical Mayhem
 Shawn Godin
 Solutions to Mayhem problems M488–M494 are presented.

131 The Contest Corner: No. 4
 Shawn Godin

133 The Olympiad Corner: No. 302
 Nicolae Strungaru

133 The Olympiad Corner Problems: OC76–OC80

135 The Olympiad Corner Solutions: OC16–OC20

141 Book Reviews
 Amar Sodhi

141
 Rediscovering Mathematics: You Do the Math
 by Shai Simonson

142
 What’s Luck Got to Do with It? The History, Mathematics, and Psychology of the Gambler’s Illusion
 by Joseph Mazur

144 Unsolved Crux Problems: 909 and 1077

 Two previously unsolved Crux problems are shared.

145 Recurring Crux Configurations 6 :
 J. Chris Fisher

 This new, occasionally appearing column, highlights situations that reappear in Crux problems. In this issue problem editor J. Chris Fisher examines triangles for which OI is parallel to a side.
This month’s “free sample” is:

3733. Proposed by Angel Dorito, Geld, ON.

Suppose that \(f \) and \(g \) are different, nonconstant polynomials of degree at most 2 so that \(f(x) - g(x) = f(g(x)) - g(f(x)) \) for all real numbers \(x \). Prove that exactly one of the two functions, \(f \) or \(g \), must be linear and find all possible values of its slope.