37: No 5 September / Septembre 2011

Published by:
Canadian Mathematical Society
Société mathématique du Canada
209 - 1725 St. Laurent Blvd.
Ottawa, ON K1G 3V4, Canada
Fax/Téléc. : 613 733 8994

©CANADIAN MATHEMATICAL SOCIETY 2011. ALL RIGHTS RESERVED.

SYNOPSIS

257 Editorial Shawn Godin

259 Skoliad No. 134 Lily Yen and Mogens Hansen
- Baden-Württemberg Mathematics Contest, 2010
- Concours mathématique Baden-Württemberg 2010
- Solutions to questions of the Mathematics Association of Quebec Contest, Secondary level, 2010

266 Mathematical Mayhem Shawn Godin

266 Editorial: Shawn Godin
267 Mayhem Problems: M495–M500
269 Mayhem Solutions: M457–M462
273 Problem of the Month Ian VanderBurgh

275 The Olympiad Corner: No. 295 R.E. Woodrow and Nicolae Strugaru

275 Olympiad Corner Problems: OC21–OC30

In this Corner are solutions from readers to some problems from
- Youth Mathematical Olympiad of the Asociación Venezolana de Competencias Matemáticas, 2006
- 42nd Mongolian Mathematical Olympiad, 10th Grade
- Olympiade Suisse de mathématiques, 2005, tour final
- 55th Czech and Slovak Mathematical Olympiad, 2006
- 24th Iranian Mathematical Olympiad, First Round
- 24th Iranian Mathematical Olympiad, Third Round
- XVIII Olimpiada de Matemática de Países del Cono Sur
- 2007 Bulgarian National Olympiad
- 48th IMO Bulgarian Team, First Selection Test

301 Book Reviews Amar Sodhi

301 Lobachevski Revisited
by Seth Braver
Reviewed by J. Chris Fisher
Two unsolved problems from *Crux* are reproduced.

Recurring Crux Configurations:
J. Chris Fisher

This new, occasionally appearing column, highlights situations that reappear in *Crux* problems. In this issue problem editor J. Chris Fisher examines triangles for which $2b^2 = c^2 + a^2$. Enjoy!

Summations according to Gauss
by *Gerhard J. Woeginger*

The paper begins with a well known anecdote involving C. F. Gauss, as a young child, summing the integers 1 through 100. The author illustrates how a method that could be employed with Gauss’ problem can be used to determine various sums and integrals. The method is used on several problems, including one from the 2000 APMO and one from the 1980 Putnam Competition.

A nest of Euler Inequalities
by *Luo Qi*

For any given $\triangle ABC$, the *antipodal triangle* is defined. Repeating this construction gives a sequence of triangles with circumradii R_n and inradii r_n obeying a generalized form of Euler’s inequality

$$2^n R_n \geq \cdots \geq 2^2 R_2 \geq 2 R_1 \geq R_0 \geq 2r_0 \geq 2^2 r_1 \geq \cdots \geq 2^{n+1} r_n,$$

$(n = 1, 2, \cdots)$, with equalities iff $\triangle ABC$ is equilateral.

Problems: 3650–3663

This month’s “free sample” is:

3658. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania.

Let $-\pi < \theta_0 < \theta_1 < \cdots < \theta_k < \pi$ and let a_j, $j = 0, 1, \cdots, k$, be complex numbers. Prove that if

$$\lim_{n \to \infty} \sum_{j=0}^{k} a_j \cos(\theta_j n) = 0,$$

then $a_j = 0$ for all j.
3658. Proposé par Ovidiu Furdui, Campia Turzii, Cluj, Roumanie.

Soit $-\pi < \theta_0 < \theta_1 < \cdots < \theta_k < \pi$ et soit $a_j, j = 0, 1, \cdots, k,$ k nombres complexes. Montrer que si

$$\lim_{n \to \infty} \sum_{j=0}^{k} a_j \cos(\theta_j n) = 0,$$

alors $a_j = 0$ pour tout les j.

323 Solutions: 3224, 3551–3555, 3557–3562