SYNOPSIS

65 Skoliad No. 131 *Lily Yen and Mogens Hansen*
- Concours mathématique de la Banque Nationale de la Nouvelle Zélande, 2010
- National Bank of New Zealand Junior Mathematics Competition, 2010
- Solutions to questions of the Baden-Württemberg Mathematics Contest, 2009

76 Mathematical Mayhem *Shawn Godin*
- Mayhem Problems: M476–M481
- Mayhem Solutions: M438, M439, M441, M443, M444
- Problem of the Month *Ian VanderBurgh*

84 The Olympiad Corner: No. 292 *R.E. Woodrow*
Editor’s Note: No new problem sets are given in this corner, as the backlog of readers’ solutions is being cleared to make way for a renewed column later in 2011.

In this *Corner* are solutions from readers to some problems from
- Thai Mathematical Olympiad Examinations, 2006
- 14th Turkish Mathematical Olympiad, 2006
- Turkish Team Selection Test for IMO 2007
- Estonian Team Selection Contest, 2007
- Russian Mathematical Olympiad, 2007, 10th grade

103 Book Reviews *Amar Sodhi*

103 *The Calculus of Friendship*
by Steven Strogatz
Reviewed by Georg Gunther

105 *Crux* Chronology

by *J. Chris Fisher*

Longtime *Crux* problems editor J. Chris Fisher outlines the history of *Crux Mathematicorum with Mathematical Mayhem* from its humble beginnings as a problems newsletter for math enthusiasts in Ottawa to the respected international journal it is today.
This month’s “free sample” is:

3621. Proposed by Titu Zvonaru, Comănești, Romania.

Let \(a, b,\) and \(c\) be nonnegative real numbers with \(a + b + c = 1.\)
Prove that

\[
\frac{27}{128}[(a-b)^2+(b-c)^2+(c-a)^2]+\frac{4}{1+a} + \frac{4}{1+b} + \frac{4}{1+c} \leq \frac{3}{ab + bc + ca}.
\]