SYNOPSIS

257 Contributor Profile: Václav Konečný

258 Editorial Václav Linek

259 Skoliad No. 126 Lily Yen and Mogens Hansen
- Swedish Junior High School Mathematics Contest Final Round, 2009/2010
- Concours mathématique suédois Niveau école intermédiaire Ronde Finale, 2009/2010
- Solutions to questions of the Maritime Mathematics Competition, 2009

265 Mathematical Mayhem Ian VanderBurgh

265 Mayhem Problems: M445–M450
267 Mayhem Solutions: M407–M412

271 Problem of the Month Ian VanderBurgh

274 The Olympiad Corner: No. 287 R.E. Woodrow

Featuring the Bulgarian National Olympiad, National Round 2007; the 1st and 2nd Bulgarian Team Selection Tests 2007; the Mediterranean Mathematical Competition 2007; the 24th Balkan Mathematical Olympiad 2007; the Indian Team Selection Test 2007; and readers’ solutions to some problems from
- the Hungarian Mathematical Olympiad 2005–2006 Specialized Mathematical Classes, 1st Round
- the 2005 Kürschák Competition
- the 8th Hong Kong (China) Mathematical Olympiad
- the Hong Kong Team Selection Tests 1 and 2
- the 20th Nordic Mathematical Olympiad
301 Book Reviews Amar Sodhi

301 Mrs. Perkins’s Electric Quilt: And Other Intriguing Stories of Mathematical Physics
by Paul J. Nahin
Reviewed by Nora Franzova

303 A Taste of Mathematics Volume VIII, Problems for Mathematics Leagues III
by Peter I. Booth, John Grant McLoughlin, and Bruce L.R. Shawyer
Reviewed by Nancy Clarke

304 Ratio-Type Inequalities for Bisectors, Medians, Altitudes, and Sides of a Triangle
by Mihály Benczúr and Shan-He Wu

In the introduction the authors write “The inequalities relating angle-bisectors, medians, altitudes, and the sides of a triangle have attracted the interest of many geometers and have motivated a large number of research papers ...” They then proceed to prove five ratio-type inequalities involving these quantities associated with a triangle. The first inequality they prove is

\[\sum_{\text{cyclic}} \frac{s - a}{w_a} \leq \frac{1}{3} \sum_{\text{cyclic}} \frac{w_a}{s - a} \]

where \(a, b, c \) are the side lengths of the triangle, \(s \) is the semiperimeter, and \(w_a \) is the length of the angle bisector from vertex \(A \).

Enjoy!!

309 Polynomials Without Sign Changes
by Gerhard J. Woeginger

In the introduction the author writes “One of the simplest mathematical inequalities states that the square of a real number is nonnegative. Although this inequality is straightforward, it is quite powerful.” He proceeds to show how this simple observation can be used to solve a class of problems involving multivariable inequalities.

He then extends the method by utilizing polynomials that do not change sign on a given interval. Finally, he invites the reader to apply his method to solve the following problem from the 2002 Romanian National Olympiad:

Problem 9 Find all real numbers \(-2 \leq a, b, c, d, e \leq 2\) that satisfy the following system:

\[
\begin{align*}
a + b + c + d + e &= 0, \\
a^3 + b^3 + c^3 + d^3 + e^3 &= 0, \\
a^5 + b^5 + c^5 + d^5 + e^5 &= 10.
\end{align*}
\]

Enjoy!!
314 Problems: 3551–3563

This month’s “free sample” is:

3563. Proposed by Mikhail Kochetov and Sergey Sadov, Memorial University of Newfoundland, St. John’s, NL.

A square \(n \times n \) array of lamps is controlled by an \(n \times n \) switchboard. Flipping a switch in position \((i, j)\) changes the state of all lamps in row \(i\) and in column \(j\).

(a) Prove that for even \(n\) it is possible to turn off all the lamps no matter what the initial state of the array is. Demonstrate how to do it with the minimum number of switches.
(b) Prove that for odd \(n\) it is possible to turn off all the lamps if and only if the initial state of the array has the following property: either the number of ON lamps in every row and every column is odd, or the number of ON lamps in every row and every column is even. If this property holds, provide an algorithm to turn off all the lamps.

3563. Proposé par Mikhail Kochetov et Sergey Sadov, Université Memorial de Terre-Neuve, St. John’s, NL.

Un tableau carré formé de \(n \times n \) lampes est contrôlé par un tableau de distribution \(n \times n \). Actionner un bouton en position \((i, j)\) change l’état de toutes les lampes de la ligne \(i\) et de la colonne \(j\).

(a) Montrer que pour \(n\) pair, il est possible d’éteindre toutes les lampes quel que soit le statut initial du tableau. Indiquer comment procéder en actionnant un minimum de boutons.
(b) Montrer que pour \(n\) impair, il est possible d’éteindre toutes les lampes si et seulement si l’état initial du tableau répond à la condition suivante : le nombre de lampes allumées dans chaque ligne et chaque colonne est soit impair, soit pair. Dans le cas où cette condition est satisfaite, proposer un algorithme pour éteindre toutes les lampes.

319 Totten Solutions: TOTTEN–01 to TOTTEN–12

340 Solutions: 3451–3462