Mayhem Solutions

M394. Proposed by the Mayhem Staff.

The numbers \(a, b, c, d, \) and \(e \) are five consecutive integers, in that order. Prove that the difference between the average of the squares of \(e \) and \(e \) and the average of the squares of \(a \) and \(c \) is equal to four times \(e \).

Solution by all the solvers below indicated by a star.

We write the numbers \(a, b, c, d, \) and \(e \) as \(n - 2, n - 1, n, n + 1, \) and \(n + 2 \), respectively. Then

\[
\frac{1}{2} (e^2 + e^2) - \frac{1}{2} (a^2 + c^2) = \frac{1}{2} (e^2 - a^2) = \frac{1}{2} ((n + 2)^2 - (n - 2)^2) = \frac{1}{2} (2n^2) = 4n = 4e,
\]

as required.

Solved by *EDIN AJANOVIĆ, student, First Bosniak High School, Sarajevo, Bosnia and Herzegovina; *JACLYN CHANG, student, Western Canada High School, Calgary, AB; *RICHARD I. HESS, Rancho Palos Verdes, CA, USA; *HUGO LUYO SANCHEZ, Pontificia Universidad Católica del Perú, Lima, Peru; *RICARD PEIRO, IES "Abastos", Valencia, Spain; *BRUNO SALGUEIRO FANEGO, Viveiro, Spain; *JOSE JAIME SAN JUAN CASTELLANOS, student, Universidad tecnológica de la Mixteca, Oaxaca, Mexico; *JIXUAN WANG, student, Don Mills Collegiate Institute, Toronto, ON; *GUSNADI WIYOGA, student, SMPN 5, Yogyakarta, Indonesia; *OSCAR XIA, student, St. George's School, Vancouver, BC; and *KONSTANTINE ZELATOR, University of Pittsburgh, Pittsburgh, PA, USA.

M395. Proposed by the Mayhem Staff.

The quadrilateral \(ABCD \) is such that each of its sides is tangent to a given circle, as shown. If \(AB = AD \), prove that \(BC = CD \).

Solution by Jadyn Chang, student, Western Canada High School, Calgary, AB.

In the diagram, \(AB = AD \), and \(AB, BC, CD, DA \) are tangent to the circle at \(E, F, G, H \), respectively.

Because of the theorem that says that the two tangents to a circle from a given exterior point have the same length, then \(AE = AH, BE = BF, CF = CG, \) and \(DG = DH \).
Also, since \(AB = AD \), then \(AH + DH = AE + BE \). But \(AH = AE \), so \(DH = BE \). But \(DG = DH \) and \(BE = BF \), so \(DG = BF \). Since \(CF = CG \), then \(BC = BF + CF = DG + CG = CD \), as required.

Also solved by EDIN AJANOVIĆ, student, First Bosniak High School, Sarajevo, Bosnia and Herzegovina; GEORGE APOSTOPOULOS, Messolonghi, Greece; HUGO LUYO SANCHEZ, Pontificia Universidad Católica del Perú, Lima, Peru; RICARD PEIRO, IES “Abastos”, Valencia, Spain; BRUNO SALGUEIRO PANEGO, Viveiro, Spain; JIXUAN WANG, student, Don Mills Collegiate Institute, Toronto, ON; GUSNADI WIYOGA, student, SMPN 8, Yogyakarta, Indonesia; and KONSTANTINE ZELATOR, University of Pittsburgh, Pittsburgh, PA, USA. There was one incomplete solution submitted.

M396. Proposed by the Mayhem Staff.

The rectangle \(ABCD \) has side lengths \(AB = 8 \) and \(BC = 6 \). Circles with centres \(O_1 \) and \(O_2 \) are inscribed in triangles \(ABD \) and \(BCD \). Determine the distance between \(O_1 \) and \(O_2 \).

Solution by Gusnadi Wiyoga, student, SMPN 8, Yogyakarta, Indonesia.

We know that \(AD = CB \), \(AB = CD \), and \(BD = DB \). Hence \(\triangle ABD \) is congruent to \(\triangle BCD \). This means that the two incircles have equal radii.

Next, we find the radius, \(r \), of these circles by finding the radius of the incircle of \(\triangle ABD \) (see the figure below). Connect \(O_1 \) to each of \(A \), \(B \), and \(D \). Also, let points \(P \), \(Q \), and \(R \) on \(AB \), \(BD \), and \(DA \), respectively, be the points of tangency of the circle to the sides of the triangle; connect \(O_1 \) to \(P \), \(Q \), and \(R \).

Since \(AD = 6 \) and \(AB = 8 \), then by the Pythagorean Theorem, we have

\[
BD = \sqrt{AD^2 + AB^2} = \sqrt{6^2 + 8^2} = 10.
\]

Also, the area of \(\triangle ABD \) is \(\frac{1}{2}(AD)(AB) = \frac{1}{2}(8)(6) = 24 \). But this area also equals the sum of the areas of \(\triangle AOB \), \(\triangle BOA \), and \(\triangle DOA \). Since \(O_1P \), \(O_1Q \), and \(O_1R \) are perpendicular to \(AB \), \(BD \), and \(DA \), respectively, then these areas equal \(\frac{1}{2}(AB)(O_1P) \), \(\frac{1}{2}(BD)(O_1Q) \), and \(\frac{1}{2}(DA)(O_1R) \), respectively. Therefore, \(\frac{1}{2}(8r) + \frac{1}{2}(10r) + \frac{1}{2}(6r) = 24 \), or \(12r = 24 \), and so \(r = 2 \).
Lastly, construct rectangle O_1XO_2Y with sides parallel to the sides of the original rectangle (see the second figure on the preceding page). Note that $O_1X = 8 - 2r$, since O_1 is r units from AD and O_2 is r units from BC. Thus, $O_1X = 4$. Similarly, $XO_2 = 6 - 2r = 2$. Therefore,

$$O_1O_2 = \sqrt{4^2 + 2^2} = \sqrt{20} = 2\sqrt{5}.$$

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greece; JACLYN CHANG, student, Western Canada High School, Calgary, AB; HUGO LUYO SANCHEZ, Pontificia Universidad Catolica del Peru, Lima, Peru; RICARD PEIRÓ, IES "Abastos", Valencia, Spain; BRUNO SALGUEIRO FANEGO, Viveiro, Spain; and JIXUAN WANG, student, Don Mills Collegiate Institute, Toronto, ON. There were two incomplete solutions submitted.

M397. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania.

Determine all pairs (x, y) of integers such that

$$x^4 - x + 1 = y^2.$$

Solution by Edin Ajanovic, student, First Bosniak High School, Sarajevo, Bosnia and Herzegovina.

We consider four cases: $x \leq -1$, $x = 0$, $x = 1$, and $x \geq 2$.

If $x \leq -1$, then $x < 1$, so $(x^2)^2 = x^4 < x^4 - x + 1$. Also, $x < 0$ and $2x + 1 \leq -1 < 0$, so $x(2x + 1) > 0$, which yields $2x^2 > -x$ and

$$x^4 - x + 1 < x^4 + 2x^2 + 1 = (x^2 + 1)^2.$$

Therefore, $(x^2)^2 < x^4 - x + 1 < (x^2 + 1)^2$. Since $x^4 - x + 1$ is strictly between two consecutive perfect squares, then it cannot be a perfect square itself, so it cannot equal y^2 in this case.

If $x = 0$, then the equation becomes $y^2 = 1$, so $y = \pm 1$. This yields the solutions $(x, y) = (0, 1)$ and $(0, -1)$.

If $x = 1$, then the equation becomes $y^2 = 1$, so $y = \pm 1$. This yields the solutions $(x, y) = (1, 1)$ and $(1, -1)$.

If $x \geq 2$, then $x > 1$ so $x^4 - x + 1 < x^4 = (x^2)^2$. Also, $x(2x - 1) > 0$ so $-x > -2x^2$, which yields

$$x^4 - x + 1 > x^4 - 2x^2 + 1 = (x^2 - 1)^2.$$

Therefore, $(x^2 - 1)^2 < x^4 - x + 1 < (x^2)^2$. Since $x^4 - x + 1$ is again strictly between two consecutive perfect squares, then it cannot be a perfect square itself, so it cannot equal y^2 in this case.

This covers all possible cases. Therefore, the solutions are $(0, 1)$, $(0, -1)$, $(1, 1)$, and $(1, -1)$.

Also solved by RICHARD I. HESS, Rancho Palos Verdes, CA, USA; RICARD PEIRÓ, IES "Abastos", Valencia, Spain; EDWARD T.H. WANG, Wilfrid Laurier University, Waterloo, ON; and JIXUAN WANG, student, Don Mills Collegiate Institute, Toronto, ON. There were three incomplete solutions submitted.
M398. Proposed by the Mayhem Staff.

(a) The cubic equation \(w^3 - bw^2 + cw - d = 0 \) has roots \(r, s, \) and \(t \). Determine \(b, c, \) and \(d \) in terms of \(r, s, \) and \(t \).

(b) Suppose that \(a \) is a real number. Determine all solutions to the system of equations

\[
\begin{align*}
x + y + z &= a, \\
xy + yz + zx &= -1, \\
xyz &= -a.
\end{align*}
\]

Solution by Gusnadi Wiyoga, student, SMPN 8, Yogyakarta, Indonesia.

(a) Since \(r, s, \) and \(t \) are the roots of \(w^3 - bw^2 + cw - d = 0 \), then we have

\[
\begin{align*}
w^3 - bw^2 + cw - d &= (w - r)(w - s)(w - t), \\
w^3 - bw^2 + cw - d &= w^3 - (r + s + t)w^2 + (rs + st + rt)w - rst.
\end{align*}
\]

Since these cubics are equal for any value of \(w \), the corresponding coefficients are equal, so we have \(b = r + s + t, \ c = rs + st + rt, \) and \(d = rst \).

(b) Suppose that \(x, y, \) and \(z \) are the roots of the equation

\[
m^3 - (x + y + z)m^2 + (xy + yz + zx)m - xyz = 0.
\]

From the given information, this means that \(x, y, \) and \(z \) are the roots of \(m^3 - am^2 - m + a = 0 \), which can be rewritten as

\[
\begin{align*}
m^2(m - a) - (m - a) &= 0; \\
(m^2 - 1)(m - a) &= 0; \\
(m - 1)(m + 1)(m - a) &= 0.
\end{align*}
\]

Therefore, the roots are \(m = 1, \ m = -1, \) and \(m = a \).

Therefore, the possible values of \(x, y, \) and \(z \) are \(1, -1, \) and \(a \). In order to satisfy the given equations, \(x, y, \) and \(z \) need to take all three of these values, in some order. Therefore, the possible triples \((x, y, z) \) are \((1, -1, a), \) \((-1, 1, a), \) \((a, 1, -1), \) \((a, -1, 1), \) \((1, a, -1), \) \((-1, a, 1), \) and \((-1, -1, 1) \).

Also solved by EDIN AJANOVIC, student, First Bosniak High School, Sarajevo, Bosnia and Herzegovina; GEORGE APOSTOLOPOULOS, Messakonghi, Greece; RICHARD I. HESS, Rancho Palos Verdes, CA, USA; HUGO LUYO SANCHEZ, Pontificia Universidad Catolica del Peru, Lima, Peru; RICARD PEIRO, IES "Abastos", Valencia, Spain; BRUNO SALGUEIRO FANEGO, Viveiro, Spain; EDWARD T.H. WANG, Wilfrid Laurier University, Waterloo, ON; JIXUAN WANG, student, Don Mills Collegiate Institute, Toronto, ON; and KONSTANTINE ZELATOR, University of Pittsburgh, Pittsburgh, PA, USA. There were two incomplete solutions submitted.

Zelator noted that some of these solutions are redundant when \(a = 1 \) or \(a = -1 \).

M399. Proposed by Neculai Stanciu, George Emil Palade Secondary School, Buzău, Romania.

Determine all triples \((a, b, c) \) of positive integers for which \(\frac{3ab - 1}{abc + 1} \) is a positive integer.
Solution by Oscar Xia, student, St. George’s School, Vancouver, BC.

Suppose that $\frac{3ab - 1}{abc + 1} = n$, where n is a positive integer. Then we have

$3ab - 1 = nabc + n$, or $3ab - nabc = n + 1$, or $ab = \frac{n + 1}{3 - nc}$.

Since a, b, c, and n are positive integers, then $3 - nc$ is a positive integer
(since ab is positive) so $(n, c) = (1, 1), (2, 1), (1, 2)$.

If $(n, c) = (1, 1)$, then $ab = 1$ so $(a, b) = (1, 1)$.

If $(n, c) = (2, 1)$, then $ab = 3$ so $(a, b) = (3, 1)$ or $(1, 3)$.

If $(n, c) = (1, 2)$, then $ab = 2$ so $(a, b) = (2, 1)$ or $(1, 2)$.

Therefore, the five triples are $(a, b, c) = (1, 1, 1), (3, 1, 1), (1, 3, 1), (2, 1, 2), (1, 2, 2)$. (We can check that each triple satisfies the requirements.)

Also solved by EDIN AJOVIC, student, First BosnÄk High School, Sarajevo, Bosnia and Herzegovina; GEOFFREY A. RANDALL, Hamden, CT, USA; RICARD PEIRO, IES ‘Abastos’, Valencia, Spain; BRUNO SALGUEIRO FANEGO, Viveiro, Spain; EDWARD T.H. WANG, Wilfrid Laurier University, Waterloo, ON; and KONSTANTINE ZELATOR, University of Pittsburgh, Pittsburgh, PA, USA. There were two incorrect solutions and one incomplete solution submitted.

M400. Proposed by Mihály Benze, Brasov, Romania.

Suppose that a, b, and c are positive real numbers. In addition, suppose that $a^n + b^n = c^n$ for some positive integer n with $n \geq 2$. Prove that if k is a positive integer with $1 \leq k < n$, then a^k, b^k, and c^k are the side lengths of a triangle.

Solution by Bruno Salgueiro Fanegó, Viveiro, Spain, modified by the editor.

Suppose that $a^n + b^n = c^n$ for some positive integer $n \geq 2$. Since the numbers a, b, and c are positive, then $a < c$ and $b < c$.

Suppose that k is a positive integer with $1 \leq k < n$. To show that a^k, b^k, and c^k are the side lengths of a triangle, we need to prove three inequalities, namely we need to prove that $a^k + b^k > c^k$, that $a^k + c^k > b^k$, and that $b^k + c^k > a^k$.

Since $a < c$, then $b^k + c^k > a^k$. Since $b < c$, then $a^k + c^k > b^k$. It remains to prove that $a^k + b^k > c^k$.

Since $0 < a < c$ and $0 < b < c$ and $k - n < 0$, then $a^{k-n} > c^{k-n} > 0$ and $b^{k-n} > c^{k-n} > 0$. Therefore,

\[
\begin{align*}
 c^k &= c^{k-n}c^n \\
 &= c^{k-n}(a^n + b^n) \\
 &= c^{k-n}a^n + c^{k-n}b^n \\
 &< a^{k-n}a^n + b^{k-n}b^n \\
 &= a^k + b^k,
\end{align*}
\]

as required.

Therefore, a^k, b^k, and c^k are the side lengths of a triangle.

There were two incorrect solutions submitted.