Several Symmetric Inequalities of Exponential Kind

Arkady Alt

In this article we suggest a general approach for proving certain symmetric inequalities of exponential kind in three variables which have appeared in print at various times.

Theorem 1 Let \(n, m, p, \) and \(q \) be arbitrary nonnegative real numbers, such that \(n \geq m \) and \(p \geq q \). Then for any positive real numbers \(a, b, c \) the following inequality holds

\[
\frac{a^{n+p} + b^{n+p} + c^{n+p}}{a^{m+q} + b^{m+q} + c^{m+q}} \geq \frac{a^n + b^n + c^n}{a^m + b^m + c^m} \cdot \frac{a^p + b^p + c^p}{a^q + b^q + c^q}.
\]

Proof: Let \(\sigma(x) = \sigma(x; a, b, c) = \sum_{\text{cyclic}} a^x; \) the inequality then becomes

\[
\frac{\sigma(n + p)}{\sigma(m + q)} \geq \frac{\sigma(n)}{\sigma(m)} \cdot \frac{\sigma(p)}{\sigma(q)}.
\]

The inequality is essentially the same upon switching \(n \) and \(p \) or \(m \) and \(q \), so we may suppose that \(n \geq p \) and \(m \geq q \). Then \(q = \min\{n, m, p, q\} \).

Since the inequality to be proved is equivalent to \(\sigma(n + p) \sigma(m) \sigma(q) \geq \sigma(m + q) \sigma(n) \sigma(p) \) and we also have

\[
\sigma(n + p) \sigma(m) \sigma(q)
\]

\[
= \sum_{\text{cyclic}} a^{n+p} \cdot \left(\sum_{\text{cyclic}} a^{m+q} + \sum_{\text{cyclic}} (a^m b^q + b^m a^q) \right)
\]

\[
= \left(\sum_{\text{cyclic}} a^{n+p} \right) \left(\sum_{\text{cyclic}} a^{m+q} \right) + \sum_{\text{cyclic}} \left(a^{n+p} + b^{n+p} \right) (a^m b^q + b^m a^q)
\]

\[
+ \sum_{\text{cyclic}} c^{n+p} (a^m b^q + b^m a^q),
\]

with the analogous equality holding for \(\sigma(m + q) \sigma(n) \sigma(p) \), it therefore suffices to prove the following two inequalities:

\[
\sum_{\text{cyclic}} (a^{n+p} + b^{n+p}) (a^m b^q + b^m a^q) \geq \sum_{\text{cyclic}} (a^{m+q} + b^{m+q}) (a^n b^p + b^n a^p),
\]

\[
\sum_{\text{cyclic}} c^{n+p} (a^m b^q + b^m a^q) \geq \sum_{\text{cyclic}} c^{m+q} (a^n b^p + b^n a^p).
\]
The first inequality above is settled by the following calculation:
\[
\begin{align*}
&\sum_{\text{cyclic}} (a^{n+p} + b^{n+p})(a^{m}b^{q} + b^{m}a^{q}) \\
&- \sum_{\text{cyclic}} (a^{m+q} + b^{m+q})(a^{n}b^{p} + b^{n}a^{p}) \\
&= \sum_{\text{cyclic}} (a^{n+p+m}b^{q} + b^{n+p+m}a^{q} + a^{m}b^{n+p+q} + b^{m}a^{n+p+q} \\
&- a^{n+m+q}b^{p} - b^{n+m+q}a^{p} - a^{n}b^{m+p+q} - b^{n}a^{m+p+q}) \\
&= \sum_{\text{cyclic}} a^{q}b^{q}(a^{n+m+p-q} + b^{n+m+p-q} - a^{n+m}b^{p-q} - b^{n+m}a^{p-q}) \\
&+ \sum_{\text{cyclic}} a^{m}b^{m}(a^{n+p+q-m} + b^{n+p+q-m} - a^{p+q}b^{n-m} - b^{p+q}a^{n-m}) \\
&= \sum_{\text{cyclic}} a^{q}b^{q}(a^{n+m} - b^{n+m}) (a^{p-q} - b^{p-q}) \\
&+ \sum_{\text{cyclic}} a^{m}b^{m}(a^{p+q} - b^{p+q}) (a^{n-m} - b^{n-m}) \geq 0.
\end{align*}
\]
Lastly, since
\[
\begin{align*}
&\sum_{\text{cyclic}} c^{n+p}(a^{m}b^{q} + b^{m}a^{q}) = \sum_{\text{cyclic}} c^{q}(a^{n+p}b^{m} + b^{n+p}a^{m}); \\
&\sum_{\text{cyclic}} c^{m+q}(a^{n}b^{p} + b^{n}a^{p}) = \sum_{\text{cyclic}} c^{q}(a^{m+p}b^{n} + b^{m+p}a^{n}),
\end{align*}
\]
the second inequality that remains to be proved now follows immediately from
\[
\begin{align*}
&\sum_{\text{cyclic}} c^{q}(a^{n+p}b^{m} + b^{n+p}a^{m} - a^{m+p}b^{n} - b^{m+p}a^{n}) \\
&= \sum_{\text{cyclic}} a^{m}b^{m}c^{q}(a^{n-m+p} + b^{n-m+p} - a^{p}b^{n-m} - b^{p}a^{n-m}) \\
&= \sum_{\text{cyclic}} a^{m}b^{m}c^{q}(a^{p} - b^{p})(a^{n-m} - b^{n-m}) \geq 0. \hspace{1cm} \blacksquare
\end{align*}
\]

Corollary 1 Let \(k \) be a nonnegative integer and let \(p \geq q \geq 0 \). Then for any positive real numbers \(a, b, \) and \(c \) the following inequality holds
\[
\frac{a^{kp} + b^{kp} + c^{kp}}{a^{kq} + b^{kq} + c^{kq}} \geq \left(\frac{a^{p} + b^{p} + c^{p}}{a^{q} + b^{q} + c^{q}} \right)^{k}.
\]

Proof: We set \(n = kp, m = kq \) in Theorem 1 to obtain
\[
\frac{\sigma(kp + p)}{\sigma(kq + q)} \geq \frac{\sigma(kp)}{\sigma(kq)} \cdot \frac{\sigma(p)}{\sigma(q)}
\]
and that yields the inequality
\[
\frac{\sigma((k+1)p)}{\sigma((k+1)q)} \left(\frac{\sigma(p)}{\sigma(q)}\right)^{-(k+1)} \geq \frac{\sigma(kp)}{\sigma(kq)} \left(\frac{\sigma(p)}{\sigma(q)}\right)^{-k},
\]
which implies that
\[
\frac{\sigma(kp)}{\sigma(kq)} \left(\frac{\sigma(p)}{\sigma(q)}\right)^{-k} \geq \frac{\sigma(1 \cdot p)}{\sigma(1 \cdot q)} \left(\frac{\sigma(p)}{\sigma(q)}\right)^{-1} = 1,
\]
and the inequality to be proved now follows. □

Theorem 2 Let \(a, b, c\) be positive real numbers. Then for any positive integer \(n\) the function
\[
L_n(x) = L_n(x; a, b, c) = \frac{a^n + b^n + c^n}{a^{nx} + b^{nx} + c^{nx}} \sum_{\text{cyclic}} \left(\frac{a^x}{b + c}\right)^n
\]
is increasing in \(x\) on \((0, \infty)\).

Proof: Let \(p, q \in (0, \infty)\) and \(q < p\). Due to the homogeneity of \(L_n(x; a, b, c)\) with respect to \(a, b, c\), it suffices to prove the assertion when \(a+b+c = 1\).

Using the expansion \(\frac{1}{(1-t)^n} = \sum_{k=0}^{\infty} (\frac{k+n-1}{n-1})t^k\) we obtain
\[
\frac{\sigma(np)\sigma(nq)}{\sigma(n)} (L_n(p) - L_n(q))
\]
\[
= \sigma(nq) \sum_{\text{cyclic}} \frac{a^{np}}{(1-a)^n} - \sigma(np) \sum_{\text{cyclic}} \frac{a^{nq}}{(1-a)^n}
\]
\[
= \sigma(nq) \sum_{\text{cyclic}} \sum_{k=0}^{\infty} \left(\frac{k+n-1}{n-1}\right)a^{k+np} - \sigma(np) \sum_{\text{cyclic}} \sum_{k=0}^{\infty} \left(\frac{k+n-1}{n-1}\right)a^{k+nq}
\]
\[
= \sum_{k=0}^{\infty} \left(\frac{k+n-1}{n-1}\right) (\sigma(nq)\sigma(k+np) - \sigma(np)\sigma(k+nq))
\]
\[
= \sum_{k=0}^{\infty} \left(\frac{k+n-1}{n-1}\right) \sum_{\text{cyclic}} \left(a^{k+np}b^{nq} + a^{nq}b^{k+np} - a^{k+np}b^{nq} - a^{np}b^{k+nq}\right)
\]
\[
= \sum_{k=0}^{\infty} \left(\frac{k+n-1}{n-1}\right) \sum_{\text{cyclic}} a^{nq}b^{nq} (a^{n(p-q)} - b^{n(p-q)}) (a^k - b^k) \geq 0,
\]
since \((a^{n(p-q)} - b^{n(p-q)}) (a^k - b^k) \geq 0\) for any nonnegative integer \(k\). □

Corollary 2 For any positive real numbers \(a, b, c, r\) and any positive numbers \(p, q\) such that \(q < r < p\) the following inequality holds
\[
\frac{1}{\sigma(nq)} \sum_{\text{cyclic}} \left(\frac{a^q}{b^r + c^r}\right)^n \leq \frac{1}{\sigma(nr)} \sum_{\text{cyclic}} \left(\frac{a^r}{b^r + c^r}\right)^n \leq \frac{1}{\sigma(np)} \sum_{\text{cyclic}} \left(\frac{a^p}{b^r + c^r}\right)^n.
\]
Proof: Since $L_n(x; a^r, b^r, c^r)$ is increasing in x and $q < r < p$, we have

$$L_n \left(\frac{q}{r}; a^r, b^r, c^r \right) \leq L_n \left(1; a^r, b^r, c^r \right) \leq L_n \left(\frac{p}{r}; a^r, b^r, c^r \right),$$

which is equivalent to the inequality to be proved.

By the results of Corollary 1 and Corollary 2 we obtain successively

$$\frac{1}{\sigma(nq)} \sum_{\text{cyclic}} \left(\frac{a^q}{b^r + c^r} \right)^n \leq \frac{1}{\sigma(nr)} \sum_{\text{cyclic}} \left(\frac{a^r}{b^r + c^r} \right)^n;$$

$$\sum_{\text{cyclic}} \left(\frac{a^q}{b^r + c^r} \right)^n \geq \frac{\sigma(nr)}{\sigma(nq)} \geq \left(\frac{\sigma(nr)}{\sigma(nq)} \right)^n;$$

and similarly we obtain

$$\sum_{\text{cyclic}} \left(\frac{\sigma(p)}{\sigma(nr)} \right)^n \geq \left(\frac{\sigma(p)}{\sigma(r)} \right)^n.$$

It follows that for any positive real numbers a, b, c, r and any positive real numbers p, q such that $q < r < p$, the following inequality holds

$$\frac{1}{\sigma^n(q)} \sum_{\text{cyclic}} \left(\frac{a^q}{b^r + c^r} \right)^n \leq \frac{1}{\sigma^n(r)} \sum_{\text{cyclic}} \left(\frac{a^r}{b^r + c^r} \right)^n \leq \frac{1}{\sigma^n(p)} \sum_{\text{cyclic}} \left(\frac{a^p}{b^r + c^r} \right)^n.$$

Corollary 3 Let a, b, c be positive real numbers and let

$$F(x) = F(x; a, b, c) = \frac{a + b + c}{a^x + b^x + c^x} \sum_{\text{cyclic}} \frac{a^2 + b^2}{a + b},$$

$$E(x) = E(x; a, b, c) = \frac{1}{a^x + b^x + c^x} \sum_{\text{cyclic}} \frac{a (b^x + c^x)}{b + c}.$$

Then $F(x)$ and $E(x)$ are each decreasing on $(0, \infty)$.

Proof: We have

$$L_1(x) = \frac{\sigma(1)}{\sigma(x)} \sum_{\text{cyclic}} \frac{\sigma(x)}{b + c} - \frac{\sigma(1)}{\sigma(x)} \sum_{\text{cyclic}} \frac{b^x + c^x}{b + c} = \sum_{\text{cyclic}} \frac{a + b + c}{b + c} - F(x),$$

hence, $F(x)$ is decreasing on $(0, \infty)$ because $L_1(x)$ is increasing on $(0, \infty)$ by Theorem 2. Straightforward calculations show that $E(x) = F(x) - 2$, hence $E(x)$ is also decreasing on $(0, \infty)$.
We now apply the preceding results to obtain some generalizations of various problems.

Problem For any positive real numbers \(a, b, c, r\) and any positive real numbers \(p, q\) such that \(q < r < p\) prove the following inequalities:

\[
\frac{1}{\sigma(p)} \sum_{\text{cyclic}} \frac{a^p + b^p}{a^r + b^r} \leq \frac{3}{\sigma(r)} \sum_{\text{cyclic}} \frac{a^q + b^q}{a^r + b^r}; \quad (4)
\]

\[
\frac{1}{\sigma(p)} \sum_{\text{cyclic}} \frac{a^r (b^p + c^p)}{b^r + c^r} \leq 1 \leq \frac{1}{\sigma(q)} \sum_{\text{cyclic}} \frac{a^r (a^q + b^q)}{a^r + b^r}. \quad (5)
\]

Solution: We have \(F(P; a^r, b^r, c^r) \leq F(1; a^r, b^r, c^r) \leq F(P; a^r, b^r, c^r)\) by Corollary 2, and since \(F(1; a^r, b^r, c^r) = 3\) the first inequality follows.

Similarly, \(E(P; a^r, b^r, c^r) \leq E(1; a^r, b^r, c^r) \leq E(P; a^r, b^r, c^r)\) and since \(E(1; a^r, b^r, c^r) = 1\) the second inequality follows.

Inequality (4) is a generalization of the inequality \(\sum_{\text{cyclic}} \frac{a^2 + b^2}{a + b} \leq \frac{3\sigma(2)}{\sigma(1)}\) in [2], and also a generalization of the inequality in [3].

Inequality (5) generalizes the inequality \(\sum_{\text{cyclic}} \frac{x^p (y + z)}{y^p + z^p} \geq x + y + z\), for positive \(x, y, z,\) and \(p > 1\), which is Peter Wao’s generalization of the inequality in [4] (see the commentary on p. 180). Furthermore, by using the rightmost relation of Inequality (5) we can obtain a generalization of the inequality \(\sum_{\text{cyclic}} \frac{a^{\lambda+1}}{b^\lambda + c^\lambda} \geq \frac{a + b + c}{2}\), for \(\lambda \geq 0\), suggested by Walther Janous in [4] (again, see the commentary on p. 180). Namely: for any positive real numbers \(a, b, c, p,\) and \(q\) the following inequality holds

\[
\sum_{\text{cyclic}} \frac{a^{p+q}}{b^p + c^p} \geq \frac{a^q + b^q + c^q}{2}. \quad (6)
\]

Proof: The inequality \(\sum_{\text{cyclic}} \frac{a^{p+q}}{b^p + c^p} \frac{(b^q + c^q)}{b^{p+q} + c^{p+q}} \leq \frac{2a^{p+q}}{b^p + c^p}\) holds since simple manipulations show that it is equivalent to \((b^q - c^q)(b^p - c^p) \geq 0\), and from inequality (5) it follows that \(\sum_{\text{cyclic}} \frac{a^{p+q}}{b^p + c^p} \geq \frac{a^q + b^q + c^q}{2}\), hence,

\[
\sum_{\text{cyclic}} \frac{a^{p+q}}{b^p + c^p} \geq \frac{1}{2} \sum_{\text{cyclic}} \frac{a^{p+q}}{b^p + c^p} \geq \frac{a^q + b^q + c^q}{2},
\]

which proves inequality (6).

In [1] the inequality \(\sum_{\text{cyclic}} \left(\frac{c^2}{a^2 + b^2}\right)^n \geq \sum_{\text{cyclic}} \left(\frac{c}{a + b}\right)^n\) was suggested. The next theorem offers a generalization.
Theorem 3 Let \(n \) be a positive integer and \(a, b, c \) be positive real numbers. Then \(G(x) = G_n(x; a, b, c) = \sum_{\text{cyclic}} \left(\frac{c^x}{a^x + b^x} \right)^n \) is increasing on \((0, \infty)\).

Proof: Let \(p > q > 0 \) and let \(A_x = \frac{a^x}{\sigma(x)}, B_x = \frac{b^x}{\sigma(x)}, \) and \(C_x = \frac{c^x}{\sigma(x)} \). Then we obtain

\[
G_n(p) \geq G_n(q) \iff \sum_{\text{cyclic}} \frac{A^n_p}{(1 - A_p)^n} \geq \sum_{\text{cyclic}} \frac{A^n_q}{(1 - A_q)^n}
\]

\[
\iff \sum_{\text{cyclic}} \sum_{k=0}^{\infty} \binom{k + n - 1}{n - 1} A^{k+n}_p \geq \sum_{\text{cyclic}} \sum_{k=0}^{\infty} \binom{k + n - 1}{n - 1} A^{k+n}_q
\]

\[
\iff \sum_{k=1}^{\infty} \binom{k + n - 1}{n - 1} \sum_{\text{cyclic}} A^{k+n}_p \geq \sum_{k=1}^{\infty} \binom{k + n - 1}{n - 1} \sum_{\text{cyclic}} A^{k+n}_q
\]

\[
\iff \sum_{k=1}^{\infty} \binom{k + n - 1}{n - 1} \frac{\sigma((k+n)p)}{\sigma^{k+n}(p)} \geq \sum_{k=1}^{\infty} \binom{k + n - 1}{n - 1} \frac{\sigma((k+n)q)}{\sigma^{k+n}(q)},
\]

and the last inequality above holds termwise by the result of Corollary 1.

By applying the result of Theorem 3 to the terms of an infinite series we obtain the following corollary.

Corollary 4 Let \(h(t) = \sum_{n=0}^{\infty} h_n t^n \), where each \(h_n \) is nonnegative and the series converges for \(t \geq 0 \). Then for any positive real numbers \(a, b, c \) the function \(G_h(x; a, b, c) = \sum_{\text{cyclic}} h \left(\frac{c^x}{a^x + b^x} \right) \) is increasing in \(x \) on \((0, \infty)\).

References

Arkady Alt
1902 Rosswood Drive
San Jose, CA 95124
USA
arkady.alt@gmail.com