34: No 1 February / Février 2008

Published by:
Canadian Mathematical Society
Société mathématique du Canada
577 King Edward
Ottawa, ON K1N 6N5
Fax/Télé: 613 565 1539

©CANADIAN MATHEMATICAL SOCIETY 2008. ALL RIGHTS RESERVED.

SYNOPSIS

1 Contributor Profile: Peter Y. Woo

2 Skoliad: No. 107 Robert Bilinski
 - Montmorency Contest 2005-06
 - Concourse Montmorency 2005-06
 - solutions to the 2006 British Columbia Colleges Senior High School Mathematics Contest

8 Mathematical Mayhem Ian VanderBurgh

8 Mayhem Problems: M326–M331
10 Mayhem Solutions: M276–M281
15 Problem of the Month Ian VanderBurgh

18 The Olympiad Corner: No. 267 R.E. Woodrow
 Featuring the Italian Team Selection Text, Pisa 2005; the 11th Form of the Final Round of the XXI Russian Mathematical Olympiad 2004–2005; the Taiwan Mathematical Olympiad 2005; a correction to problem #4 of Category B Belarus Mathematical Olympiad 2002; and readers' solutions to some of the problems from
 - the Hungarian Mathematical Olympiad 2003–2004, Grades 11–12, Round 2 and the Final Round;
 - the Hungarian Mathematical Olympiad 2003–2004 (Specialized Mathematics Classes), Grades 11–12, First Round;
 - the Finnish High School Math Contest 2004, Final Round;

34 Book Reviews John Grant McLoughlin

34 How Euler Did It
 by C. Edward Sandifer
 Reviewed by J. Chris Fisher

36 Nonplussed! Mathematical Proof of Implausible Ideas
 by Julian Havil
 Reviewed by Robert D. Poodiack
A Useful Inequality

by Roy Barbara

The author presents and proves a new inequality that turns out to offer an alternative approach to solving a large class of inequalities. When applicable, the method allows reducing a symmetric inequality with three variables to an inequality in just one variable.

Enjoy!

44 Problems: 3281, 3301–3312

This month’s “free sample” is:

3311. Proposed by Michel Bataille, Rouen, France.

Let \(n \) be an integer with \(n \geq 2 \). Suppose that for \(k = 0, 1, \ldots, n - 2 \) we have

\[
\binom{n-2}{k} \equiv (-1)^k(k+1) \quad (\text{mod } n).
\]

Show that \(n \) is a prime.

3311. Proposé par Michel Bataille, Rouen, France.

Soit \(n \) un entier avec \(n \geq 2 \). On suppose que pour \(k = 0, 1, \ldots, n - 2 \) on a

\[
\binom{n-2}{k} \equiv (-1)^k(k+1) \quad (\text{mod } n).
\]

Montrer que \(n \) est un nombre premier.

49 Solutions: 3201–3213