SOLUTIONS

No problem is ever permanently closed. The editor is always pleased to consider for publication new solutions or new insights on past problems.

Let P be any point in the plane of $\triangle ABC$. Let D, E, and F denote the mid-points of BC, CA, and AB, respectively. If G is the centroid of $\triangle ABC$, prove that

$$0 \leq 3PG + PA + PB + PC - 2(PD + PE + PF) \leq \frac{1}{2}(AB + BC + CA).$$

Composite of similar solutions by Michel Bataille, Rouen, France; and Walther Janous, Ursulinen-gymnasium, Innsbruck, Austria.

The left inequality has already been proven (see the solution of problem 3052 [2006 : 341]).

As in 3052, we set $a = PA$, $b = PB$, and $c = PC$. With this notation, the right inequality can be rewritten as

$$|a| + |b| + |c| + |a + b + c| - |b + c| - |c + a| - |a + b| \leq \frac{1}{2}(|b - a| + |c - b| + |a - c|),$$

or

$$|2a| + |2b| + |2c| + |2(a + b + c)| \leq |b - a| + |c - b| + |a - c| + 2(|b + c| + |c + a| + |a + b|).$$

Now, the Triangle Inequality gives us

$$|2a| = |(a + b) - (b - a)| \leq |a + b| + |b - a|,$$

$$|2b| = |(b + c) - (c - b)| \leq |b + c| + |c - b|,$$

$$|2c| = |(c + a) - (a - c)| \leq |c + a| + |a - c|,$$

$$|2(a + b + c)| = |(a + b) + (b + c) + (c + a)| \leq |a + b| + |b + c| + |c + a|.$$

The result follows by adding the last four inequalities.

Also solved by CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; and the proposer.

For any positive integer n, prove that there exists a polynomial $P(x)$, of degree at least $8n$, such that

$$
\sum_{k=1}^{(2n+1)^2} |P(k)| < |P(0)|.
$$

Essentially the same solution by Roy Barbara, Lebanese University, Fanar, Lebanon; Michel Bataille, Rouen, France; Richard I. Hess, Rancho Palos Verdes, CA, USA; Walther Janous, Ursulengymnasium, Innsbruck, Austria; and John Hawkins and David R. Stone, Georgia Southern University, Statesboro, GA, USA.

Let n be a positive integer. Let $P(x) = \prod_{k=1}^{(2n+1)^2} (x - k)$. Then $P(k) = 0$ for $k = 1, 2, \ldots, (2n + 1)^2$, and therefore,

$$
\sum_{k=1}^{(2n+1)^2} |P(k)| = 0 < (2n + 1)! = |P(0)|.
$$

The degree of $P(x)$ is $(2n + 1)^2 \geq 8n$ (note that this inequality is equivalent to $(2n - 1)^2 \geq 0$).

Also solved by M. R. Modak, Pune, India; and the proposer.

The solution by Modak was the same as the one above except that he defined $P(x)$ as the product of $x - k$ for $k = 2$ to $k = (2n + 1)^2$ instead of $k = 1$ to $k = (2n + 1)^2$. Thus, his polynomial $P(x)$ has degree $(2n + 1)^2 - 1 = 4n(n + 1)$. The proposer's solution was considerably more complicated, involving Chebyshev polynomials.

Let P be an interior point of the triangle ABC. Denote by d_a, d_b, d_c the distances from P to the sides BC, CA, AB, respectively, and denote by D_A, D_B, D_C the distances from P to the vertices A, B, C, respectively. Further let P_A, P_B, and P_C denote the measures of $\angle BPC$, $\angle CPA$, and $\angle APB$, respectively.

Prove that

$$
d_a d_b \sin \left(\frac{1}{2} (P_A + P_B) \right) + d_b d_c \sin \left(\frac{1}{2} (P_B + P_C) \right) + d_c d_a \sin \left(\frac{1}{2} (P_C + P_A) \right) \leq \frac{1}{4} (D_B D_C \sin P_A + D_C D_A \sin P_B + D_A D_B \sin P_C).
$$

Solution by Peter Y. Woo, Biola University, La Mirada, CA, USA.

Let $[XYZ]$ represent the area of $\triangle XYZ$. Then the right side of the given inequality is simply $\frac{1}{2} [ABC]$.
Let the interior angle bisectors of \(\angle BPC \), \(\angle CPA \), and \(\angle APB \) meet the sides \(BC \), \(CA \), and \(AB \) at \(A' \), \(B' \), and \(C' \), respectively. Then \(PA' \geq d_a \), \(PB' \geq d_b \), and \(PC' \geq d_c \). Thus, the left side of the given inequality is less than twice the sum of \([A'PB']\), \([B'PC']\), and \([C'PA']\); that is, the left side of the given inequality is less than \(2[A'B'C']\).

Therefore, it suffices to prove that \([A'B'C'] \leq \frac{1}{3}[ABC]\).

But \(A'B'C'\) is a Cevian triangle of \(\triangle ABC\); that is, \(AA'\), \(BB'\), and \(CC'\) are concurrent. This follows since

\[
\frac{BA'}{A'C} \cdot \frac{CB'}{B'A} \cdot \frac{AC'}{C'B} = \frac{PB}{PC} \cdot \frac{PC}{PA} \cdot \frac{PA}{PB} = 1.
\]

The desired result then follows from the following theorem:

Theorem. Let \(AA'\), \(BB'\), and \(CC'\) be three concurrent Cevians of \(\triangle ABC\). Then \([A'B'C'] \leq \frac{1}{3}[ABC]\).

Proof: Let

\[
\lambda = \frac{AC'}{C'B}, \quad \mu = \frac{BA'}{A'C}, \quad \text{and} \quad \nu = \frac{CB'}{B'A}.
\]

From Ceva's Theorem, we have \(\lambda \mu \nu = 1\). Then

\[
[BAC'] = \frac{\mu[ABC]}{(1 + \mu)(1 + \lambda)}, \quad [CB'A'] = \frac{\nu[ABC]}{(1 + \nu)(1 + \mu)}, \quad \text{and} \quad [AC'B'] = \frac{\lambda[ABC]}{(1 + \lambda)(1 + \nu)}.
\]

Hence,

\[
\frac{[A'B'C']}{[ABC]} = 1 - \frac{\mu}{(1 + \mu)(1 + \lambda)} - \frac{\nu}{(1 + \nu)(1 + \mu)} - \frac{\lambda}{(1 + \lambda)(1 + \nu)} = 1 - \frac{\mu(1 + \nu) + \nu(1 + \lambda) + \lambda(1 + \mu)}{(1 + \lambda)(1 + \mu)(1 + \nu)} = 1 - \frac{\lambda \mu + \nu + \lambda \mu + \mu \nu + \nu \lambda}{(1 + \lambda)(1 + \mu)(1 + \nu)} = \frac{1 + \lambda \mu \nu}{2(\lambda + 1/\lambda) + (\mu + 1/\mu) + (\nu + 1/\nu)} \quad \text{since} \lambda \mu \nu = 1
\]

which is obviously less than or equal to \(\frac{2}{3} = \frac{1}{3}\) because each of the bracketed expressions is at least 2.

Also solved by Walther Janous, Ursulinengymnasium, Innsbruck, Austria; and the proposer.
Proposed by Arkady Alt. San Jose, CA, USA.

Let ABC be a non-obtuse triangle with circumradius R. If a, b, c are the lengths of the sides opposite angles A, B, C, respectively, prove that

$$a \cos^3 A + b \cos^3 B + c \cos^3 C \leq \frac{abc}{4R^2}.$$

Composite of similar solutions by Mohammed Aassila, Strasbourg, France; and Vedula N. Murty, Dover, PA, USA.

Let S be the area of triangle ABC. Since

$$S = \frac{abc}{4R} = \frac{1}{2} R^2 \sum_{\text{cyclic}} \sin 2A,$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R,$$

and

$$\sum_{\text{cyclic}} \sin 4A = -4 \sin 2A \sin 2B \sin 2C,$$

we have

$$\sum_{\text{cyclic}} a \cos^3 A = \sum_{\text{cyclic}} (2R \sin A) \cos^3 A = R \sum_{\text{cyclic}} \sin 2A \cos^2 A$$

$$= \frac{1}{2} R \sum_{\text{cyclic}} \sin 2A (1 + \cos 2A)$$

$$= \frac{1}{2} R \sum_{\text{cyclic}} \sin 2A + \frac{1}{4} R \sum_{\text{cyclic}} \sin 4A$$

$$= \frac{abc}{4R^2} - R \sin 2A \sin 2B \sin 2C.$$

Now we note that $\sin 2A \sin 2B \sin 2C \geq 0$ because $\triangle ABC$ is non-obtuse. Thus, we obtain the desired inequality.

Equality holds if and only if the triangle is right-angled.

Also solved by MICHEL BATAILLE, Rouen, France; CAO MINH QUANG, Nguyen Binh Khiem High School, Vinh Long, Vietnam; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; APOSTOLIS K. DEMIS, Varvakeio High School, Athens, Greece; JOE HOWARD, Portales, NM, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; SALEEM MALIK, student, Sarajevo College, Sarajevo, Bosnia and Herzegovina; JOEL SCHLOSBERG, Bayside, NY, USA; PANOS E. TSAOUSSOGLOU, Athens, Greece; PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.

Howard observed that

$$\sum_{\text{cyclic}} a \cos^3 A > \frac{abc}{4R^2}$$

if and only if the triangle is obtuse, a fact that follows easily from the featured solution as well.
Let \(x_1, x_2, \ldots, x_n \) be positive real numbers satisfying \(\prod_{i=1}^{n} x_i = 1 \). Prove that
\[
\sum_{i=1}^{n} x_i^n (1 + x_i) \geq \frac{n}{2^{n-1}} \prod_{i=1}^{n} (1 + x_i).
\]

Solution by Salem Malikić, student, Sarajevo College, Sarajevo, Bosnia and Herzegovina.

By the Power–Mean Inequality, we have \(\sqrt[n]{\frac{1}{n}} (a^n + 1) \geq \frac{1}{2^{n-1}} (a + 1) \); this is equivalent to \(a^n + 1 \geq \frac{1}{2^{n-1}} (a + 1)^n \). Using this result as well as the AM–GM Inequality and the given condition \(x_1 x_2 \cdots x_n = 1 \), we obtain
\[
\sum_{i=1}^{n} x_i^n (1 + x_i) = x_1^n + \cdots + x_n^n + x_1^{n+1} + \cdots + x_n^{n+1} \geq x_1^n + \cdots + x_n^n + n \sqrt[n]{(x_1 x_2 \cdots x_n)^n + 1} = x_1^n + \cdots + x_n^n + (x_1 + 1)^n + \cdots + (x_n + 1)^n \geq \frac{1}{2^{n-1}} ((x_1 + 1)^n + \cdots + (x_n + 1)^n) \geq \frac{n}{2^{n-1}} \prod_{i=1}^{n} (1 + x_i).
\]

Equality holds if and only if \(x_1 = x_2 = \cdots = x_n \).

Also solved by MOHAMMED AASSILA, Strasbourg, France; MICHEL BATAILLE, Rouen, France; CAO MINH QUANG, Nguyen Binh Khiem High School, Vinh Long, Vietnam; JOE HOWARD, Portales, NM, USA; WALther JANOUS, Ursulinenum, Innsbruck, Austria; JOEL SCHLOSSBERG, Bayside, NY, USA; PANOS E. TSAOSSOGLIOU, Athens, Greece; PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.

Cao Minh remarked that the case \(n = 3 \) is problem 11 (Russia) of IMO Short List 1998.

Let \(A \) be a finite set of real numbers such that each \(a \in A \) is uniquely expressible as \(a = b + c \), where \(b, c \in A \) and \(b \leq c \).

(a) Prove that there exist distinct elements \(a_1, a_2, \ldots, a_k \in A \) such that \(a_1 + a_2 + \cdots + a_k = 0 \).

(b) Does this necessarily hold if it is no longer assumed that each representation \(a = b + c \) is unique?
No correct solutions were received for either part (a) or (b). so this problem remains open.

The proposer remarked that there are many finite sets \(A \subset \mathbb{Z} \) for which the given condition holds. He claims, for example, that for each \(n \in \mathbb{N} \), the set \(\{-2^{n+1} + 2^k + 1, 2^k \mid k = 0, 1, 2, \ldots, n\} \) satisfies the requirement. [Ed.: Note that

\[
2^k = 2^{k-1} + 2^{k-1} \quad \text{if} \quad k \geq 1, \\
2^0 = 1 = (-2^{n+1} + 2^n + 1) + 2^n, \\
-2^{n+1} + 2^k + 1 = (-2^{n+1} + 2^{k-1} + 1) + 2^{k-1} \quad \text{if} \quad k \geq 1, \\
-2^{n+1} + 2^0 + 1 = -2^{n+1} + 2 = 2(-2^{n+1} + 2^n + 1).
\]

It is not difficult to verify that each of these representations is unique.]

Let \(a \) and \(b \) be real numbers satisfying \(0 \leq a \leq \frac{1}{2} \leq b \leq 1 \). Prove that

(a) \(2(b - a) \leq \cos \pi a - \cos \pi b; \)

(b) \((1 - 2a) \cos \pi b \leq (1 - 2b) \cos \pi a. \)

Solution by Michel Bataille, Rouen, France.

(a) Let \(f(x) = 2x + \cos \pi x \). The proposed inequality can then be expressed as \(f(b) \leq f(a) \).

We have \(f'(x) = 2 - \pi \sin \pi x \) and \(f''(x) = -\pi^2 \cos \pi x \). Hence, \(f' \) is decreasing on \([0, \frac{1}{2}] \) and increasing on \(\left[\frac{1}{2}, 1 \right] \). Since \(f'(0) = f'(1) = 2 \) and \(f'(\frac{1}{2}) = 2 - \pi < 0 \), there exist \(\alpha \) and \(\beta \) with \(0 < \alpha < \frac{1}{2} < \beta < 1 \), such that \(f'(\alpha) = f'(\beta) = 0 \) and \(f'(x) < 0 \) if and only if \(x \in (\alpha, \beta) \).

Thus, \(f \) is increasing on \([0, \alpha] \) and \([\beta, 1] \), and decreasing on \([\alpha, \beta] \). Since \(f(0) = f(\frac{1}{2}) = f(1) = 1 \), we see that \(f(x) \geq 1 \) for \(x \in [0, \frac{1}{2}] \) and \(f(x) \leq 1 \) for \(x \in [\frac{1}{2}, 1] \). In particular, \(f(b) \leq 1 \leq f(a) \), and the result follows.

(b) (Modified slightly by the editor). The proposed inequality is false; for example, if \(a = \frac{1}{2} \) and \(b = 1 \), then the inequality would imply that \(-\frac{1}{2} \leq -\frac{\sqrt{2}}{2} \), which is absurd.

Also solved by ROY BARBARA, Lebanese University, Fanar, Lebanon; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; APOSTOLIS K. DEMIS, Varvakeio High School, Athens, Greece; RICHARD I. HESS, Rancho Palos Verdes, CA, USA; Walfert Janous, Ursulinen gymnasium, Innsbruck, Austria; VEDULA N. MURTY, Dover, PA, USA; JOHN HAWKINS and DAVID R. STONE, Georgia Southern University, Statesboro, GA, USA; PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer (part (a) only).

All the solvers noticed that the inequality in (b) is incorrect. Curtis commented that the inequality does hold sometimes (for example, when \(a = 0 \) and \(b = \frac{3}{4} \)); thus, one cannot simply reverse it.
3171. [2006: 395, 398] Proposed by Paul Yiu, Florida Atlantic University, Boca Raton, FL, USA.

Given a point P in the first quadrant, it is known that the line segment in the first quadrant joining the coordinate axes, passing through P, and having minimum length (Philo's line) is not constructible using straightedge and compass. However, the line which (together with the two axes) defines a triangle in the first quadrant with minimum perimeter is constructible. Give such a construction.

1. Solution by Claudio Arconcher, Jundiaí, Brazil.

Claim. The hypotenuse of the triangle of minimum perimeter is the tangent at P to the circle through P, call it Γ, that is tangent to the positive x- and y-axes and separated by that tangent from the origin O.

Proof: Let the line through P tangent to Γ meet the x-axis at A and the y-axis at B. Let ℓ be any other line through P intersecting the positive axes at points U and V, say. Then the line parallel to UV and tangent to Γ intersects the axes at A' and B' with $OA' < OU$ and $OB' < OV$. Since $\ |OA + OB + AB = OA' + OB' + A'B'|$, which equals twice the length of the tangents to Γ from O, we have

$$OA + OB + AB = OA' + OB' + A'B' < OU + OV + UV,$$

as claimed. \end{proof}
Construction. First construct an arbitrary circle Γ' that is tangent to the positive x- and y-axes (whose centre C' is an arbitrary point of the line $y = x$), and call P' the point closest to O where OP intersects Γ'. Define C to be the point where the line parallel to $P'C'$ through P intersects OC'. Then C is the centre of Γ (because the dilatation with centre O that takes C' to C will take P' to P, and take Γ' and its points of tangency with the axes to Γ and its tangency points on the axes).

II. Composite of similar solutions by Peter Y. Woo, Biola University, La Mirada, CA, USA; and the proposer.

Analysis. Let the axes meet at O, and let the line segment through $P(a, b)$ meet the x-axis at A and the y-axis at B. Define $\theta = \angle BAO$. Without loss of generality assume that $a \geq b$. Then the perimeter of triangle OAB is

$$p(\theta) = a(1 + \sec \theta + \tan \theta) + b(1 + \csc \theta + \cot \theta).$$

Its derivative satisfies

$$p'(\theta) = \frac{a}{1 - \sin \theta} - \frac{b}{1 - \cos \theta}.$$

The geometry indicates that the minimum perimeter occurs when the derivative is zero, which means $a \cos \theta - b \sin \theta = a - b$, or

$$\frac{a \cos \theta - b \sin \theta}{\sqrt{a^2 + b^2}} = \frac{a - b}{\sqrt{a^2 + b^2}}.$$

With $\phi = \angle AOP$, so that $\cos \phi = \frac{a}{\sqrt{a^2 + b^2}}$ and $\sin \phi = \frac{b}{\sqrt{a^2 + b^2}}$, the last equation can be interpreted as

$$\cos(\phi + \theta) = \frac{a - b}{\sqrt{a^2 + b^2}}.$$
Construction. Construct the circle with diameter OP, cutting the y-axis again at $Y(0, b)$. Construct the circle with centre Y and radius YO, cutting the segment YP at M. Draw the circle with centre P and radius PM, cutting the first circle at Q (between P and B). Then PQ is the desired line that hits the axes at A and B and determines the triangle OAB of minimum perimeter. (Since $PQ = a - b$ and $PQ \perp OQ$, we get $\cos \angle QPO = \frac{a - b}{\sqrt{a^2 + b^2}}$; whence, the line PQ makes an angle of θ with the x-axis such that $\theta + \phi = \angle OQP$.)

Also solved by ROY BARBARA, Lebanese University, Fanar, Lebanon; MICHEL BATTLE, Rouen, France; and CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA.

Let f be a positive continuous function defined on $(0, \infty)$ such that $\liminf_{x \to \infty} f(x) > 0$. Prove that there is no positive, twice differentiable function g defined on $[0, \infty)$ which satisfies $g'' + f \circ g = 0$.

Solution by Chip Curtis, Missouri Southern State University, Joplin, MO, USA, modified by the editor.

Suppose that such a function g exists. Then $f \circ g$ is continuous, and therefore g'' is also continuous. Since f is positive on $(0, \infty)$, the function g'' is negative on $(0, \infty)$, and g' is decreasing.

Now suppose that $g'(\alpha) = -k < 0$ for some $\alpha > 0$. Then $g'(x) \leq -k$ for all $x \geq \alpha$. Therefore, $g(x) \leq g(\alpha) - k(x - \alpha)$ for all $x \geq \alpha$, implying that g is eventually negative, a contradiction. Hence, $g'(x) \geq 0$ on $[0, \infty)$ and g is increasing.

Since g is positive and increasing, $\lim_{x \to \infty} g(x) = M$ for some positive real number M. If $\lim_{x \to \infty} g(x) = \infty$, then

$$\lim_{x \to \infty} \liminf_{y \to \infty} f(g(x)) = \lim_{y \to \infty} f(y) > 0.$$

If $\lim_{x \to \infty} g(x) = M$, then, using the continuity of f, we have

$$\lim_{x \to \infty} \liminf_{y \to M} f(g(x)) = \lim_{y \to M} f(y) = f(M) > 0.$$

Thus, in both cases, $\liminf_{x \to \infty} f(g(x)) > 0$.

Now, since $g'' = -f \circ g$, we have

$$\limsup_{x \to \infty} g''(x) = -\liminf_{x \to \infty} f(g(x)) < 0.$$

Therefore, there exist $\delta > 0$ and $\beta > 0$ such that $g''(x) \leq -\delta$ for all $x \geq \beta$. Then $g'(x) \leq g'(\beta) - \delta(x - \beta)$ for all $x \geq \beta$, implying that g' is eventually negative, a contradiction.

Hence, such a function g does not exist.
Let OAB be a right triangle with right angle at O. Let OO' be the bisector of angle O, with O' on AB. Let D and E be the feet of the perpendiculars from O' to the legs OA and OB, respectively. Let $F = OO' \cap DE$, $G = AE \cap O'D$, and $H = BD \cap O'E$.

Prove that $\triangle FGH$ is an isosceles right triangle with right angle at F.

Since O' lies on the internal bisector of $\angle AOB$, we have $DO' = O'E$, and therefore, the rectangle $ODO'E$ is a square. Hence, $FD = FO'$ and $\angle FDO' = \angle FO'O' = 45^\circ$. Since $\triangle DAG$ and $\triangle OAE$ are similar, as are $\triangle HO'B$ and $\triangle DAB$, we obtain

$$\frac{DG}{AD} = \frac{OE}{AO} = \frac{OD}{AO} = \frac{O'B}{AB} = \frac{O'H}{AD}.$$

Hence, $DG = O'H$. It follows that $\triangle FDO'$ and $\triangle FO'O'$ are congruent. Thus, $FG = FH$ and $\angle DFG = \angle FO'O'FH$, which implies that $\angle GFH = 90^\circ$ (because $\angle DFO' = 90^\circ$). Consequently, $\triangle FGH$ is isosceles with a right angle at F.
Given $\triangle ABC$, we define A' to be the point where the internal angle bisector of angle A meets the side BC. Let B' and C' be the feet of the perpendiculars from A' to the sides AC and AB, respectively. Prove that BB' and CC' intersect on the altitude from A.

Composite of similar solutions by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain; and Salem Malikić, student, Sarajevo College, Sarajevo, Bosnia and Herzegovina.

We will use directed distances in Ceva's Theorem to show that no need for special cases. From the congruent right triangles $AC'A'$ and $AB'A'$, we deduce that $AC' = AB'$; that is,

$$\frac{AC'}{B'A'} = 1.$$

Let D be the foot of the altitude from A. From the similar right triangles $C'B'A'$ and DBA, we have

$$\frac{BD}{C'B} = \frac{AB}{BA'},$$

and from the similar right triangles $A'B'C$ and ADC, we have

$$\frac{CB'}{DC} = \frac{AC'}{AC}.$$

Multiplying together these three equations, we obtain

$$\frac{AC'}{B'A'} \cdot \frac{BD}{C'B} \cdot \frac{CB'}{DC} = \frac{AB}{BA'} \cdot \frac{AC'}{AC}.$$

Since A' lies on the bisector of angle A, we see that A' divides the segment BC in the ratio $AB : AC$; whence, $\frac{BA'}{AC'} = \frac{AB}{AC}$; that is,

$$\frac{AB}{AC} \cdot \frac{AC'}{BA'} = 1.$$

We conclude that

$$\frac{AC'}{B'A'} \cdot \frac{BD}{C'B} \cdot \frac{CB'}{DC} = 1,$$

and the desired result follows from the converse of Ceva's Theorem. [Almost! See the remarks following the list of solvers.]

Let $\triangle ABC$ be a triangle with $\angle B > 90^\circ$ and $\angle A < 60^\circ$. Let P be a point on the side AB such that $\angle CPB = 60^\circ$. Let D be the point on CP which also lies on the interior angle bisector of $\angle A$. If $\angle CBD = 30^\circ$, prove that CP is a trisector of angle ACB.

I. Solution by Apostolis K. Demis, Varvakeio High School, Athens, Greece.

Let $\triangle AY$ be the bisector of $\angle CAB$, let $PM \perp AB$ with M on AC, let CN be the bisector of $\angle ACP$, let F be the point on AM with $\angle FPA = 60^\circ$, let H be the point of intersection of CN and PM, and let E be the point of intersection of CN and AD. Denote the angles of $\triangle ABC$ by α, β, and γ as usual.

It is clear that $\angle FPM = \angle MPC = 30^\circ$. From $\triangle PAc$, we obtain $\alpha + \angle ACP = 60^\circ$; then $\angle ACN = \angle NCP = \frac{1}{2} \angle ACP = 30^\circ - \frac{1}{2} \alpha$. From $\triangle APD$, we get $\frac{1}{2} \alpha + \angle ADP = 60^\circ$; then $\angle ADP = 60^\circ - \frac{1}{2} \alpha$.

In $\triangle FPC$, the line PM is the bisector of $\angle FPC$ and the line CN is the bisector of $\angle ACP$. Thus, H is the incentre of $\triangle FPC$. Hence, the line FH is the bisector of $\angle MFH$. From $\triangle APF$, we see that $\angle FPM = \alpha + 60^\circ$, so that $\angle MFH = \angle FHP = \frac{1}{2} \alpha + 30^\circ$.

From $\triangle FHC$, we obtain

$$\angle FHE = \angle FCH + \angle CFH$$

$$= (30^\circ - \frac{1}{2} \alpha) + (30^\circ + \frac{1}{2} \alpha) = 60^\circ.$$

Thus, in $\triangle FHP$, we have

$$\angle EHP = 180^\circ - \angle HPF - \angle HFP - \angle EHF$$

$$= 180^\circ - 30^\circ - (\frac{1}{2} \alpha + 30^\circ) - 60^\circ = 60^\circ - \frac{1}{2} \alpha.$$

Therefore, $\angle EDP = \angle ADP = 60^\circ - \frac{1}{2} \alpha = \angle EHP$, which implies that quadrilateral $EHDP$ is cyclic. Thus, $\angle CHD = \angle EPD = 60^\circ$, and hence, the points F, H, and D are collinear.

Let PM intersect BD at K. If $\angle DBC = 30^\circ$, then quadrilateral $PBCK$ is cyclic, since $\angle KPC = \angle KBC = 30^\circ$. Thus, $\angle DCB = \angle PKB$ and $\angle CKB = \angle CPB = 60^\circ$. From above, we have $\angle CHD = 60^\circ$; whence, $\angle CKB = \angle CHD$. Therefore, quadrilateral $KHDC$ is cyclic, which implies that $\angle HKD = \angle HCD$. It follows that $\angle DCB = \angle HCD = \angle ACH$.

St. John's, NL; JOEL SCHLOSBERG, Bayside, NY, USA; PETER Y. WOO, Biola University, La Mirada, CA, USA; TITU ZVONARU, Comanesti, Romania; and the proposer.
II. Solution by Geoffrey A. Kendall, Hamden, CT, USA.

Set $\theta = \angle ACD$, $\varphi = \angle DCB$, and $\beta = \angle PBD$. From $\triangle PBC$, we see that $\beta + \varphi = 90^\circ$.

From the trigonometric form of Ceva's Theorem, we have

$$\frac{\sin \angle BAD}{\sin \angle DAC} \cdot \frac{\sin \theta}{\sin \varphi} \cdot \frac{\sin 30^\circ}{\sin \beta} = 1.$$

Hence,

$$\sin \theta = 2 \sin \varphi \sin \beta = 2 \sin \varphi \cos \varphi = \sin 2\varphi.$$

Since the angles θ and 2φ are not supplementary ($\theta < 60^\circ$ and $\varphi < 30^\circ$), we conclude that $\theta = 2\varphi$.

Also solved by MICHEL BATAILLE, Rouen, France; FRANCISCO BELLOT ROSADO, I.B. Emilio Ferrari, and MARÍA ASCENSIÓN LÓPEZ CHAMORRO, I.B. Leopoldo Cano, Valladolid, Spain; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; RICHARD I. HESS, Rancho Palos Verdes, CA, USA; VACLAV KONEČNÝ, Big Rapids, MI, USA; TAICHI MAEKAWA, Takatsuki City, Osaka, Japan; SALEM MALIKIC, student, Sarajevo College, Sarajevo, Bosnia and Herzegovina; M. R. MODAK, Pune, India; JOEL SCHLOSBERG, Bayside, NY, USA; BOB STERKEY, Leonia, NJ, USA; PETER Y. WOO, Biola University, La Mirada, CA, USA; TITU ZVONARU, Comanesti, Romania; and the proposer.

Let P be any interior point of triangle $A_1A_2A_3$. Let T_1, T_2, T_3 denote the projections of P onto the sides A_2A_3, A_3A_1, A_1A_2, respectively, and let H_1, H_2, H_3 denote the orthocentres of triangles $A_1T_2T_3$, $A_2T_3T_1$, $A_3T_1T_2$, respectively. Prove that the lines H_1T_1, H_2T_2, H_3T_3 are concurrent.
A composite of similar solutions by Apostolis K. Demis, Varvakeio High School, Athens, Greece; and Taichi Maekawa, Takatsuki City, Osaka, Japan.

Because the lines T_2H_1 and PT_3 are both perpendicular to A_1A_2, they are parallel. Likewise, $T_3H_1 \parallel PT_2$; whence $H_1T_2PT_3$ is a parallelogram. In the same way, $H_2T_3PT_1$ is a parallelogram. Consequently, H_1T_2 is parallel and equal to its opposite side T_3P, which is parallel and equal to its opposite side H_2T_1. It follows that $H_1H_2T_1T_2$ is a parallelogram, so that diagonals H_1T_1 and H_2T_2 have a common mid-point.

Similarly, using parallelograms $H_2T_3PT_1$ and $H_3T_1PT_2$, we deduce that $H_2H_3T_2T_3$ is a parallelogram; whence diagonals H_2T_2 and H_3T_3 have a common mid-point. Consequently, the segments H_1T_1, H_2T_2, and H_3T_3 have a common mid-point—the lines they determine are concurrent, as desired.

Also solved by MICHEL BATAILLE, Rouen, France; FRANCISCO BELLOT ROSADO, I.B. Emiliano Ferrari, and MARÍA ASCENSIÓN LOZANO CHAMORRO, I.B. Leopoldo Cano, Valdolid, Spain (2 solutions); MANUEL BENITO, OSCAR CIAURRI, and EMILIO FERNANDEZ, Logroño, Spain; WALTHER JANOUS, Ursulengymnasium, Innsbruck, Austria; GEOFFREY A. KANDALL, Hamden, CT, USA; SALEM MALIK, student, Sarajevo College, Sarajevo, Bosnia and Herzegovina; JOEL SCHLOSBERG, Bayside, NY, USA; D. J. SMEENK, Zaltbommel, the Netherlands; PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.

In their second solution Bellot Rosado and López Chamorro determine that, with $A_1A_2A_3$ as the triangle of reference, if P has trilinear coordinates (p, q, r), then the common point of H_1T_1, H_2T_2, and H_3T_3 has coordinates

$$(p + r \cos B + q \cos C, q + p \cos C + r \cos A, r + q \cos A + p \cos B).$$

If instead you let (p, q, r) be the areal coordinates of P, then Bataille shows that the common point has areal coordinates

$$(1 - p, 1 - q, 1 - r),$$

from which he deduces that the centroid of $\triangle T_1T_2T_3$ lies two-thirds of the way from P to the common point.

Crux Mathematicorum

with Mathematical Mayhem

Editor Emeritus / Rédacteur-emeritus: Bruce L. R. Shawyer

Crux Mathematicorum

Founding Editors / Rédacteurs-fondateurs: Léopold Sauvé & Frederick G.B. Maskell
Editors emeriti / Rédacteurs-emeriti: G.W. Sands, R.E. Woodrow, Bruce L. R. Shawyer

Mathematical Mayhem

Founding Editors / Rédacteurs-fondateurs: Patrick Surry & Ravi Vakil