33: No 1 February / Février 2007

Published by:
Canadian Mathematical Society
Société mathématique du Canada
577 King Edward
Ottawa, ON K1N 6N5
Fax/Télé: 613 565 1539

©CANADIAN MATHEMATICAL SOCIETY 2007. ALL RIGHTS RESERVED.

SYNOPSIS

1 Contributor Profile: Michel Bataille
2 Editorial Jim Totten
3 Skoliad: No. 99 Robert Bilinski
 - Montmorency Contest 2004-05
 - Concours Montmorency 2004-05
 - solutions to the 2005 BC Colleges Senior High School Mathematics
 Contest, Final Round Part B
8 Mathematical Mayhem Jeff Hooper
8 Mayhem Problems: M276–M281
10 Mayhem Solutions: M226–M231
15 Problem of the Month Ian VanderBurgh
17 SPAs and the Harmonic Mean
 by Bruce Shawyer

An SPA is a Symmetric Polygonal Arc, consisting of three equal straight line segments that have equal angles between adjacent segments. An SPA could be a portion of a regular polygon, or it could be a whole equilateral triangle, depending on its angle.

In this article, we will explore some properties of SPAs and their connection with the harmonic mean.

Enjoy!

501 The Olympiad Corner: No. 259 R.E. Woodrow

Featuring the 44th International Mathematical Olympiad Short-listed Problems; a reader’s comment on a solution to problem 9 from the Singapore Mathematical Olympiad from October 2006; and readers' solutions to some of the problems from

- 7th National Olympiad of Bosnia and Herzegovina 2002;
- 4th Hong Kong Mathematical Olympiad;
- 15th Irish Mathematical Olympiad, First Paper;
35 Book Reviews *John Grant McLoughlin*

35 *99 Points of Intersection*
 by Hans Walser, translated by Peter Hilton and Jean Pedersen
 Reviewed by Nora Franzova

36 *Real Infinite Series*
 by Daniel D. Bonar and Michael J. Khoury
 Reviewed by John Grant McLoughlin

37 A Parity Subtraction Game
 by Richard K. Guy

 In the *Olympiad Corner* No. 222 of *CRUX with MAYHEM*, 28, no. 4 (May, 2002), a selection of problems from the St. Petersburg Mathematical Olympiads is given by Oleg Ivrii and Robert Barrington Leigh. The third one is

 A game starts with a heap of 25 beans. Two players alternately remove 1, 2, or 3 of them. When all the beans have been taken, the winner is the player who has an even number of beans. Assuming perfect play, does the first player or the second have a sure win?

 The *Olympiad Corner* editor recently received a request for a solution. The problem is from a list of supplementary problems; it may not have been used, and no solution is given in the book.

 The author proceeds to develop a solution for heaps of beans of various sizes.

 Enjoy!

40 Problems: 3182, 3185, 3198, 3201–3212

 This month's "free sample" is:

3208. *Proposed by Shaun White, student, Vincent Massey Secondary School, Windsor, ON.*

 Find the largest integer k such that for all positive real numbers a, b, c, we have

 $$(a^3 + 3)(b^3 + 6)(c^3 + 12) > k(a + b + c)^3.$$
3208. Proposé par Shaun White, étudiant, École secondaire Vincent Massey, Windsor, ON.

Trouver le plus grand entier \(k \) tel que pour tous les nombres réels positifs \(a \), \(b \) et \(c \), on ait

\[
(a^3 + 3) (b^3 + 6) (c^3 + 12) > k(a + b + c)^3 .
\]

47 Solutions: 3101–3113