Mayhem Solutions

M213. Proposed by Edward T.H. Wang, Wilfrid Laurier University, Waterloo, ON.

Set $S = (2 + 1)(2^2 + 1)(2^4 + 1)(2^8 + 1) \cdots (2^{1024} + 1) + 1$. Evaluate S^{m} without using a calculator.

Solution by John DeLeon, Angelo State University, San Angelo, TX.

Multiply S by $(2 - 1).$ Then

\[S = (2 - 1)(2 + 1)(2^2 + 1)(2^4 + 1) \cdots (2^{1024} + 1) + 1 \]
\[= (2^2 - 1)(2^2 + 1)(2^4 + 1) \cdots (2^{1024} + 1) + 1 \]
\[= (2^4 - 1)(2^4 + 1) \cdots (2^{1024} + 1) + 1 \]
\[\vdots \]
\[= (2^{1024} - 1)(2^{1024} + 1) + 1 \]
\[= (2^{2048} - 1) + 1 = 2^{2048}. \]

Therefore, $S^{\text{m}} = 2^{\frac{2048}{2}} = 2^2 = 4.$

Also solved by JAMES T. BRUENING, Southeast Missouri State University, Cape Girardeau, MO, USA; ALPER CAY, Uzman Private School, Kayseri, Turkey; JOSE LUIS DIAZ-BARRERO, Universitat Politècnica de Catalunya, Barcelona, Spain; SAMUEL GÓMEZ MORENO, Universidad de Jaén, Jaén, Spain; RICHARD I. HESS, Rancho Palos Verdes, CA, USA; GUSTAVO KRIMKER, Universidad CAECE, Buenos Aires, Argentina; MISSOURI STATE UNIVERSITY PROBLEM SOLVING GROUP, Springfield, MO, USA; and VEDULA N. MURTY, Dover, PA, USA.

M214. Proposed by Babis Stergiou, Chalkida, Greece.

Two equilateral triangles ABC and CDE are on the same side of line BCD. If BE intersects AC at K and DA intersects CE at L, prove that KL is parallel to BD.

Solution by Missouri State University Problem Solving Group, Springfield, MO, USA.

Since $\angle BCA = \angle ECD = 60^\circ$, we see that $\angle ACE = 60^\circ$, from which it follows that $\angle BCE = \angle ACD$. Since $AC = BC$ and $CD = CE$, we see that $\triangle ACD$ and $\triangle BCE$ are congruent (SAS). Thus, $\angle CAD = \angle CBE$, and we see that $\triangle ACL$ is congruent to $\triangle BCK$ (AAS). From this, we have $CK = CL$. Therefore, $\triangle CKL$ is isosceles. Since $\angle ACE = 60^\circ$, we see that $\angle CKL = \angle CLK = 60^\circ = \angle BCA$. Hence, KL is parallel to BD.

Also solved by MIGUEL AMENGUAL COVAS, Cala Figuera, Mallorca, Spain; and GUSTAVO KRIMKER, Universidad CAECE, Buenos Aires, Argentina. There was one incorrect solution received.
M215. Proposed by Bruce Shawyer, Memorial University of Newfoundland, St. John’s, NL.

Find a rational number \(s \) such that \(s^2 + 5 \) and \(s^2 - 5 \) are both squares of rational numbers.

Solution by Samuel Gómez Moreno, Universidad de Jaén, Jaén, Spain.

Let \(p_1 \) and \(p_2 \) be positive rational numbers such that \(p_1^2 = s^2 + 5 \) and \(p_2^2 = s^2 - 5 \). Then \((p_1 + p_2)(p_1 - p_2) = p_1^2 - p_2^2 = (s^2 + 5) - (s^2 - 5) = 10\). If we set \(a = p_1 + p_2 \) and \(b = p_1 - p_2 = 10/a \).

The solution to this linear system of equations is \(p_1 = (a^2 + 10)/2a \) and \(p_2 = (a^2 - 10)/2a \). We may then express \(s^2 \) in terms of \(a \):

\[
 s^2 = p_1^2 - 5 = \left(\frac{a^2 + 10}{2a}\right) - 5 = \frac{100 + a^4}{4a^2}.
\]

This implies that \(100 + a^4 = (2as)^2 \) is the square of a rational number.

Clearly, \(100 + a^4 > (a^2)^2 \). Hence, we may write \(100 + a^4 = (a^2 + b)^2 \) with \(b > 0 \). Then \(100 = 2a^2b + b^2 \), which yields \(a = \sqrt{(100 - b^2)/(2b)} \).

By inspection, testing over the natural numbers 1, 2, …, 9, we find that for \(b = 8 \) we get \(a = 3/2 \); whence, \(s = 41/12 \).

Also solved by JAMES T. BRUENING, Southeast Missouri State University, Cape Girardeau, MO, USA; RICHARD I. HESS, Rancho Palos Verdes, CA, USA; and VEDULA N. MURTY, Dover, PA, USA.

Bruening attached a note regarding this problem. It was solved by Fibonacci as part of a mathematical tournament at the court of Frederick II. Not only can it be found in books (for example, Eves’ An Introduction to the History of Mathematics, pp. 263, 284), but a version of it also appeared recently (March 2005) as problem #771 in the Problems Section of the College Mathematics Journal (CMJ), of which Bruening is a co-editor. According to the solution of that CMJ problem, there are an infinite number of solutions to this problem.

M216. Proposed by K.R.S. Sastry, Bangalore, India.

A Heron triangle has integer sides and area. Two sides of a Heron triangle are 442 and 649. If its area is 132396, find its perimeter.

Solution by Vedula N. Murty, Dover, PA, USA.

Let \(A \) denote the angle between the two sides whose lengths are 442 and 669. Then \(\frac{1}{2}(442)(649) \sin A = 132396 \). This gives \(\sin A = 12/13 \). Hence, \(\cos A = \pm5/13 \). Let \(a \) denote the length of the unknown side. Then we have \(a^2 = (442)^2 + (649)^2 - 2(442)(649) \cos A \). Substituting \(5/13 \) for \(\cos A \), we get a non-integer value for \(a \), which is not allowed if the triangle is a Heron triangle. Using \(\cos A = -5/13 \), we obtain \(a = 915 \). Thus, the perimeter is equal to \(442 + 669 + 915 = 2006 \).

Also solved by JAMES T. BRUENING, Southeast Missouri State University, Cape Girardeau, MO, USA; ALPER CAY, Uzman Private School, Kayseri, Turkey; ESTHER MARIA GARCIA-CABALLERO, Universidad de Jaén, Jaén, Spain; RICHARD I. HESS, Rancho Palos Verdes, CA, USA; and MISSOURI STATE UNIVERSITY PROBLEM SOLVING GROUP, Springfield, MO, USA.
\textbf{M217. Proposed by Bill Sands, University of Calgary, Calgary, AB.}

Let \(a, b, c \) be integers such that 2005 divides both \(ab + 9b + 81 \) and \(bc + 9c + 81 \). Prove that 2005 also divides \(ca + 9a + 81 \).

\textit{Solution by the Mayhem Staff.}

Let \(w = ca + 9a + 81 \). We want to prove that 2005 divides \(w \). Since 2005 divides \(ab + 9b + 81 \), we have

\[
ab + 9b + 81 = 2005k
\]

for some integer \(k \). The prime divisors of 2005 are 5 and 401, neither of which divides 81. It then follows from (1) that neither 5 nor 401 divides \(b \). On the other hand, both 5 and 401 divide \(bw \), since

\[
bw = abc + 9ab + 81b
\]

which is divisible by 2005 (using the information given in the problem). Therefore, both 5 and 401 must divide \(w \). Thus, 2005 divides \(w \).

There were 2 incomplete solutions received.

\textbf{M218. Proposed by Neven Jurić, Zagreb, Croatia.}

Compute the sum

\[
\sum_{k=1}^{99} \frac{1}{k\sqrt{k+1} + (k+1)\sqrt{k}}.
\]

\textit{Solution by Esther María García-Caballero, Universidad de Jaén, Jaén, Spain.}

By rationalizing the denominators, we obtain a telescoping series:

\[
\sum_{k=1}^{99} \frac{1}{k\sqrt{k+1} + (k+1)\sqrt{k}} = \sum_{k=1}^{99} \frac{1}{(k+1)\sqrt{k} - k\sqrt{k+1}} = \sum_{k=1}^{99} \frac{1}{(k+1)^2k - k^2(k+1)} = \sum_{k=1}^{99} \frac{1}{k(k+1)} = \frac{1}{1} - \frac{1}{\sqrt{100}} = 9.
\]

Also solved by ALPER CAY, Uzman Private School, Kayseri, Turkey; JOSÉ LUIS DÍAZ-BARRERO, Universitat Politècnica de Catalunya, Barcelona, Spain; RICHARD I. HESS, Rancho Palos Verdes, CA, USA; GUSTAVO KRIMKER, Universidad CAECE, Buenos Aires, Argentina; MISSOURI STATE UNIVERSITY PROBLEM SOLVING GROUP, Springfield, MO, USA; and VEDULA N. MURTY, Dover, PA, USA.