Hexagons and Inequalities

Yakub N. Aliyev

The popular author Lewis Carroll is also famous for his problems. Problem 71 in [2] pages 18 and 108–109 states,

In a given Triangle place a Hexagon having its opposite sides equal and parallel, and three of them lying along the sides of the Triangle, and such that its diagonals intersect in a given Point.

The problem has been generalized for the case when the given point is not inside the triangle [5]. We will look at another way to modify the problem, where the main diagonals of our hexagons will each be parallel to one of the sides.

Problem 1. Let M be a given point in the plane of triangle ABC. Construct the lines A_1B_2, B_1C_2, and C_1A_2 meeting at M such that for $i = 1$ and $i = 2$, A_i lies on BC, B_i lies on CA, C_i lies on AB, and moreover, $A_1B_2 || A_2B_1$, $B_1C_2 || B_2C_1$, $C_1A_2 || C_2A_1$ (as in Figure 1).

![Figure 1](linked-image-url)
Figure 1: Problem 1.

![Figure 2](linked-image-url)
Figure 2: Solution to Problem 1.

Solution. Analysis. Let lines C_2A_1, A_2B_1, and B_2C_1 intersect at X, Y, and Z as in Figure 2, and let A_0, B_0, and C_0 be the mid-points of A_1A_2, B_1B_2, and C_1C_2, respectively. Because the lines joining these mid-points are the mid-lines of trapezoids, we therefore have

$$A_0B_0 || A_1B_2 || A_2B_1, \quad B_0C_0 || B_1C_2 || B_2C_1, \quad C_0A_0 || C_1A_2 || C_2A_1.$$

Thus, triangles A_1ZB_2 and $A_0C_0B_0$ have corresponding sides parallel; by Desargues' Theorem, A_1A_0, B_2B_0, and ZC_0 are concurrent. In other words, C lies on ZC_0. But, M also lies on ZC_0 (since ZC_2MC_1 is a parallelogram).
This means that CM passes through C_0. Similarly, AM passes through A_0 and BM passes through B_0.

Construction. We are to construct the points A_i, B_i, and C_i. Extend the lines AM, BM, and CM to intersect the sides of $\triangle ABC$ at A_0, B_0, and C_0, respectively. Next construct the parallel to A_0C_0 through M, which intersects BA and BC at C_1 and A_2, respectively. Analogously, draw the parallel through M to B_0A_0 (and to B_0C_0) to find A_1 and B_2 (and B_1 and C_2). Desargues' Theorem then implies that the joins of appropriate pairs of these points form parallel lines as desired.

Although the figures and discussion apply to the case where M is inside the triangle, the construction for other locations of M will be essentially the same.

Problem 2. Construct the point M for which the hexagon $A_1A_2B_1B_2C_1C_2$ of Problem 1 is inscribed in a circle.

![Figure 3: Problem 2.](image1)

![Figure 4: Solution to Problem 2.](image2)

Solution. *Analysis.* We assume that $A_1A_2B_1B_2C_1C_2$ is cyclic (Figure 3.) From $C_1A_2 || C_2A_1$ we deduce that line segments $C_1C_2 = A_1A_2$. Since the secants from B satisfy $BC_2 = BA_1 \cdot BA_2$, these two equations give us $BC_2 = BA_1$. Analogously, $AC_1 = AB_2$ and $CB_1 = CA_2$. Recalling that A_0, B_0, and C_0 are the mid-points of A_1A_2, B_1B_2, and C_1C_2, respectively, we finally obtain

$$BC_0 = BA_0, \quad AC_0 = AB_0, \quad CB_0 = CA_0.$$

It is then easy to prove that A_0, B_0, and C_0 are the points where the incircle of $\triangle ABC$ touches the sides.

Construction. Construct the incircle of triangle ABC and label the points A_0, B_0, and C_0 where the incircle touches the sides BC, CA, and AB, respectively. (See Figure 4.) Next, draw the lines AA_0, BB_0, CC_0, which intersect at the desired point M. The point M is, of course, the **Gergonne point** of $\triangle ABC$ (see [3], page 13).

Problem 3. With points X, Y, and Z defined as in the solution to Problem 1, construct the point M for which the hexagon $AYCXBZ$ is inscribed in a circle.
Solution. Analysis. We suppose that $AYCXBZ$ is cyclic. Then, for the angles, we have (as in Figure 5)

$$
\angle XAB = \angle XYB = \alpha_1, \quad \angle CAX = \angle CZX = \alpha_2,
\angle YBC = \angle YZC = \beta_1, \quad \angle ABY = \angle AXY = \beta_2,
\angle ZCA = \angle ZXA = \gamma_1, \quad \angle BCZ = \angle BYZ = \gamma_2.
$$

Using the given parallel lines, we also have

$$
\angle A_0B_0B = \alpha_1, \quad \angle B_0C_0C = \beta_1, \quad \angle C_0A_0A = \gamma_1,
\angle C_0A_0 = \alpha_2, \quad \angle AA_0B_0 = \beta_2, \quad \angle BB_0C_0 = \gamma_2.
$$

From the equality $\gamma_1 = \angle C_0A_0A = \angle ZCA = \angle C_0CA$, we deduce that the points $A, C, A_0,$ and C_0 are concyclic. Thus, $\gamma_2 = \alpha_1$. Similarly, $\beta_1 = \alpha_2$ and $\beta_2 = \gamma_1$. But, we also know that

$$
\angle ABC + \angle BCA + \angle CAB = \alpha_1 + \alpha_2 + \beta_1 + \beta_2 + \gamma_1 + \gamma_2 = 180^\circ.
$$

Then $\alpha_1 + \beta_1 + \beta_2 = \gamma_2 + \alpha_2 + \gamma_1 = 90^\circ$. That is, considering $\triangle AA_0C$, we see that $\angle A_0AC = \alpha_1 + \beta_1 + \beta_2 = 90^\circ$. Consequently, the cevian AA_0 is perpendicular to the base BC and similarly, $BB_0 \perp AC$ and $CC_0 \perp AB$. It follows that M is the orthocentre of $\triangle ABC$.

Construction. Draw the altitudes AA_0, BB_0, and CC_0. Their intersection point is the desired point M. For the proof that M satisfies all the requirements, simply read the preceding analysis in reverse.
Remarks. We could also ask for our hexagons to be circumscribed about a circle. Other properties of hexagons with sides parallel to diagonals were investigated by S.I. Zetel in Problems 185–187 in [6], Ch. IV, pages 118–120.

We turn now to investigating the areas of triangles associated with the hexagons of Problem 1—hexagons that are inscribed in triangles and have diagonals that intersect in a point and are parallel to the nontriangular sides. Areas will be denoted by square brackets. We are interested in relationships among the following nine areas (as displayed in Figure 6):

\[
\begin{align*}
T_1 &= [MC_1B_2], & T_2 &= [MA_1C_2], & T_3 &= [MB_1A_2], \\
S_1 &= [MA_1A_2], & S_2 &= [MB_1B_2], & S_3 &= [MC_1C_2], \\
P_1 &= [AB_2C_1], & P_2 &= [BC_2A_1], & P_3 &= [CA_2B_1].
\end{align*}
\]

![Figure 6: Definition of \(T_i\), \(S_i\), and \(P_i\).](image1)

Figure 6: Definition of \(T_i\), \(S_i\), and \(P_i\).

Figure 7: Lemma 1.

Lemma 1. \(T_iT_j = S_i^2\), for \(\{i, j, k\} = \{1, 2, 3\}\).

Proof: From the assumptions \(A_1C_2 \parallel A_2M\) and \(A_1M \parallel A_2B_1\), we get \(\angle C_2A_1M = \angle A_2MA_1 = \angle MA_2B_1\), whose measure has been denoted by \(\alpha\) in Figure 7. Let \(a = A_1C_2, b = A_1M, c = A_2M, d = A_2B_1\), as in the figure. Then, by finding the areas \(T_2, T_3,\) and \(S_1\) and substituting them into the proposed equation \(T_2T_3 = S_1^2\), we obtain

\[
\frac{1}{2} ab \sin \alpha \cdot \frac{1}{2} cd \sin \alpha = \frac{1}{4} b^2c^2 \sin^2 \alpha \quad \text{if and only if} \quad ad = bc,
\]

which is true because of the similarity of triangles \(A_1C_2M\) and \(A_2MB_1\). Similarly, we get \(T_1T_3 = S_2^2\) and \(T_1T_2 = S_3^2\). \(\blacksquare\)

Lemma 2. For \(\{i, j, k\} = \{1, 2, 3\}\), we have \(P_i = \frac{T_i^2}{S_j + S_k - T_i}\).

Proof: Because \(A_1C_2 \parallel A_2C_1\), we can let \(h\) be the common height of triangles \(MA_1C_2, MC_1C_2,\) and \(MA_1C_2\). Then, \(S_1 = \frac{1}{2} \cdot h \cdot MA_2, S_3 = \frac{1}{2} \cdot h \cdot C_1M,\) and \(T_2 = \frac{1}{2} \cdot h \cdot BC_2A_1\). Since \(\triangle BC_2A_1\) is similar to \(\triangle BC_1A_2\), we see that

![Figure 8: Lemma 2.](image2)
\[
\frac{[BC_2A_1]}{[BC_1A_2]} = \frac{(C_2A_1)^2}{(C_1A_2)^2} = \left(\frac{C_2A_1}{C_1M + MA_2} \right)^2 = \left(\frac{T_2}{S_1 + S_3} \right)^2.
\]

By the definition of \(P_2 \), we therefore have
\[
\frac{P_2}{P_2 + T_2 + S_1 + S_3} = \left(\frac{T_2}{S_1 + S_3} \right)^2;
\]
whence, \(P_2 = \frac{T_2^2}{S_1 + S_3 - T_2} \), as claimed. \(\blacksquare \)

From these two lemmas we will derive a pair of inequalities.

Inequality 1. \(T_1 + T_2 + T_3 \geq S_1 + S_2 + S_3 \).

Proof: This is just the AM–GM Inequality combined with Lemma 1:
\[
T_1 + T_2 + T_3 = \frac{1}{2}(T_2 + T_3) + \frac{1}{2}(T_1 + T_3) + \frac{1}{2}(T_1 + T_2)
\]
\[
\geq \sqrt{T_2T_3} + \sqrt{T_1T_3} + \sqrt{T_1T_2} = \sqrt{S_1^2} + \sqrt{S_2^2} + \sqrt{S_3^2}.
\]

Inequality 2. \(T_1 + T_2 + T_3 \leq \frac{1}{3}[ABC] \).

Proof: We want to show that
\[
3(T_1 + T_2 + T_3) \leq T_1 + T_2 + T_3 + S_1 + S_2 + S_3 + P_1 + P_2 + P_3.
\]
By Lemma 2 this is equivalent to showing that
\[
2(T_1 + T_2 + T_3) \leq \frac{T_1^2}{S_2 + S_3 - T_1} + \frac{T_2^2}{S_1 + S_3 - T_2} + \frac{T_3^2}{S_1 + S_2 - T_3} + S_1 + S_2 + S_3.
\]

Because all three denominators for the \(P_i \) are strictly positive, we can apply a variant of the Cauchy-Schwarz Inequality, namely
\[
\frac{(T_1 + T_2 + T_3)^2}{2(S_1 + S_2 + S_3) - (T_1 + T_2 + T_3)} \leq \frac{T_1^2}{S_2 + S_3 - T_1} + \frac{T_2^2}{S_1 + S_3 - T_2} + \frac{T_3^2}{S_1 + S_2 - T_3},
\]
and reduce the proof to showing that
\[
2(T_1 + T_2 + T_3) - (S_1 + S_2 + S_3) \leq \frac{(T_1 + T_2 + T_3)^2}{2(S_1 + S_2 + S_3) - (T_1 + T_2 + T_3)}.
\]

To this end, we set \(a = S_1 + S_2 + S_3 \) and \(b = T_1 + T_2 + T_3 \), and we prove that
\[
2b - a \leq \frac{b^2}{2a - b}.
\]
This last task is equivalent to showing that
\[
0 \leq 2a^2 - 5ab + 3b^2 = (3b - 2a)(b - a).
\]
Since $b > a$ (which is Inequality 1), the result is now clear. Further inequalities of this type are to be found in [4] and [1].

Acknowledgements. The author would like to express very sincere thanks to the referee, who provided an extremely detailed critique of a first version of the present paper. The many helpful suggestions have led to a much clearer presentation.

References

Yakub N. Aliyev

Department of Mathematical Analysis
Faculty of Mechanics-Mathematics
Baku State University
Z. Khalilov Street 23
Baku AZ 1148
Azerbaijan

Department of Mathematics
Faculty of Pedagogics
Qafqaz University
Khyrdalan
Baku AZ 0101
Azerbaijan

yakubaliyev@yahoo.com