32: No 1 February / Février 2006

Published by:
Canadian Mathematical Society
Société mathématique du Canada
577 King Edward, POB/CP 450-A
Ottawa, ON K1N 6N5
Fax/Télé: 613 565 1539

©CANADIAN MATHEMATICAL SOCIETY 2006. ALL RIGHTS RESERVED.

SYNOPSIS

1 Editorial Jim Totten

2 Contributor Profile: K.R.S. Sastry

3 Skoliad: No. 91 Robert Bilinski
 - Montmorency Contest 2003–2004
 - Concourse Montmorency 2003–2004
 - Solution to the 2005 BC Colleges High School Mathematics Contest, Junior Preliminary Round

11 Mathematical Mayhem

11 Mayhem Problems: M226–M231

14 Mayhem Solutions: M163–M174

23 Problem of the Month Ian VanderBurgh

25 The Olympiad Corner: No. 251 R.E. Woodrow
 Featuring the 2003 Vietnamese Mathematical Olympiad; the XXIX Russian Mathematical Olympiad V (Final) Round, 10th and 11th forms; and readers’ solutions to some of the problems from
 - the XXXVI Spanish Mathematical Olympiad National Round;
 - the Taiwan (ROC) Mathematical Olympiad (2000);
 - the 2000 Hungarian National Olympiad, first round and final round.

37 Book Review John Grant McLoughlin

37 Hungary–Israel Mathematics Competition: The First Twelve Years
 by S. Gueron
 Reviewed by Stan Wagon

38 Mathematical Adventures for Students and Amateurs
 edited by David F. Hayes and Tatiana Shubin
 Reviewed by David G. Poole
Some Inversion Formulas for Sums of Quotients

by Natalio H. Guersenzvaig and Michael Z. Spivey

In this note the authors establish some formulas for certain sums of quotients of a positive integer \(n \), which are closely related to an identity established by Prévile-Ratelle in Problem M40 of the April 2003 issue of CRUX with MAYHEM. They also establish some elementary facts that are not well known about quotients and remainders.

Their main result is the following theorem.

Theorem. Let \(n \) and \(k \) be any positive integers with \(k \leq n \). Then

\[
\sum_{d=1}^{k} \left\lfloor \frac{n}{d} \right\rfloor - \sum_{d=\lceil \frac{n}{k} \rceil + 1}^{n} \left\lfloor \frac{n}{d} \right\rfloor = k \left\lfloor \frac{n}{k} \right\rfloor.
\]

Enjoy!

Problems: 3056, 3101–3113

This month’s “free sample” is:

3101. Proposed by K.R.S. Sastry, Bangalore, India.

The two distinct cevians \(AP \) and \(AQ \) of \(\triangle ABC \) satisfy the equation \(AQ^2 = AP^2 + |AC - AB|^2 \).

(a) If \(BP = CQ \), show that \(AP \) bisects \(\angle BAC \).

(b)★ If \(AP \) bisects \(\angle BAC \), prove or disprove that \(BP = CQ \).

3101. Proposé par K.R.S. Sastry, Bangalore, Inde.

Les deux cévaines distinctes \(AP \) et \(AQ \) d'un triangle \(ABC \) satisfont l'équation \(AQ^2 = AP^2 + |AC - AB|^2 \).

(a) Si \(BP = CQ \), montrer que \(AP \) est une bissectrice de l'angle \(BAC \).

(b)★ Si \(AP \) est une bissectrice de l'angle \(BAC \), démontrer ou réfuter l'égalité \(BP = CQ \).

Solutions: 2923, 2984, 3001–3007