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Mayhem Problems

Envoyez vos propositions et solutions 3 MATHEMATICAL MAYHEM,
2191 Saturn Crescent, Orleans, ON K4A 3T6, ou par courriel a

mayhem-editors@cms.math.ca

N’oubliez pas d’inclure a toute correspondance votre nom, votre année sco-
laire, le nom de votre école, ainsi que votre ville, province ou état et pays.
Nous sommes surtout intéressés par les solutions d’étudiants du secondaire.
Veuillez nous transmettre vos solutions aux problémes du présent numéro
avant le premier avril 2004. Les solutions recues apreés cette date ne seront
prises en compte que s’il nous reste du temps avant la publication des solu-
tions.

Chaque probléme sera publié dans les deux langues officielles du Canada
(anglais et francais). Dans les numéros 1, 3, 5 et 7, I'anglais précédera le
francais, et dans les numéros 2, 4, 6 et 8, le francais précédera I’anglais.

La rédaction souhaite remercier Jean-Marc Terrier et Martin Goldstein,
de I'Université de Montréal, d’avoir traduit les problémes.

—_—_— N~ S O ————

M107. Proposé par I'Equipe de Mayhem.
Soit a et b les longueurs des c6tés de I'angle droit d’un triangle rec-
tangle. Un cercle de rayon r touche les c6tés et a son centre situé sur I’hy-

poténuse. Montrer que
1 n 1 _ 1
a b r
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A right-angled triangle has legs of length a and b. A circle of radius r
touches the two legs and has its centre on the hypotenuse. Show that

1+1_1
a b r

M108. Proposé par I'Equipe de Mayhem.

Dans un cube dont on a coupé les huit sommets par des plans, com-
bien de diagonales joignant les 24 nouveaux ‘sommets’ sont-elles comprises
entiérement dans le cube?

Given a cube with its eight corners cut off by planes, how many
diagonals joining the 24 new ‘corners’ lie completely inside the cube?

M109. Proposé par I'Equipe de Mayhem.
Si tous les plifs sont des plofs et si certains plafs sont des plifs, lesquel
des énoncés X, Y, Z doivent &étre vrais ?

X : Tous les plifs sont des plafs.
Y : Certains plofs sont des plafs.

Z : Certains plifs ne sont pas des plafs.

If all plinks are plonks and some plunks are plinks, which of the state-
ments X, Y, Z must be true?

X: All plinks are plunks.
Y: Some plonks are plunks.

Z: Some plinks are not plunks.

M110. Proposé par I'Equipe de Mayhem.

A partir d’'un nombre distinct de 1, on construit un nouveau nombre en
divisant le nombre de départ augmenté d’une unité par le nombre de départ
diminué d’une unité. On recommence le processus avec le nouveau nombre.
Qu’arrive-t-il ? Expliquez!

Given any starting number (other than 1), get a new number by dividing
the number 1 larger than your starting number by the number 1 smaller
than your starting number. Then do the same with this new number. What
happens? Explain!
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M111. Proposé par I'Equipe de Mayhem.

Un nombres-croisés est comme un mots-croisés, sauf que les réponses
sont des nombres, un chiffre par case. Quelle est la somme de tous les chiffres
dans la solution de ce nombres-croisés ?

DEFINITIONS

Horizontal
- Vertical

1. Voir 3 Vertical 2 Carré
3. Cube - farre

4. Cing fois 3 Vertical 3. Quatre fois 1 Horizontal

A crossnumber is like a crossword except that the answers are numbers
with one digit in each square. What is the sum of all the digits in the solution
to this crossnumber?

CLUES

Across
E—— Down

1. See 3 Down
3. A cube
4. Five times 3 Down

2. A Square
3. Four times 1 Across

M112. Proposé par I'Equipe de Mayhem.

Déterminer le quotient de I’aire totale de I’hexagone régulier ABCDEF
et de I'aire du triangle GDE, si G est le point milieu de AB.

Given that ABCDEF is a regular hexagon and G is the mid-point of
AB, determine the ratio of the total area of hexagon ABCDEF to the area
of triangle GDE.

—_—_— N~ S O ————



364

Mayhem Solutions

M57. Proposé par J. Walter Lynch, Athens, GA, USA.

Quatre points sont egalement espacés autour d'un cercle ayant un rayon
r. Le cercle est donc divisé par 4 arcs égaux. Renversez les arcs en laissant le
point du bout en place. Trouvez I’aire de la figure ainsi obtenue.

Solution de Robert Bilinski, Outremont, QC.

Puisque les quatre points sur le cercle sont
également espacés, le quadrilatére formé par les
quatre points est un carré. On remarque que la
différence entre les aires du cercle et du carré est la
méme qu’entre le carré et I’étoile formée par le ren-
versement des arcs de cercle. Le cercle a pour aire 7wr2.

Le carré est formé de quatre triangles isocéles rectangles de cotés
égaux r et d’hypoténuse /2r. Puisque I’hypoténuse des triangles est le coté
du carré, son aire est (\/ir)z, soit 272. La différence entre I'aire du cercle et
I'aire du carré est (w — 2)r2. Donc l'aire de I'étoile est (4 — m)r2.

M5S. Proposed by the Mayhem Staff.

Find all positive integers = and y which satisfy the equation z¥ = y=*.

Solution by Mihaly Bencze, Brasov, Romania.

The equation is trivially true if z = y. We will search for solutions
where = # y.

The original equation implies IHTw = IHTy If we let f(x) = thw, then
fl(x) = ! _wlnm Therefore, f(x) is increasing on the interval (0, e) and

decreasing on (e, +00). Hence, ifz, y € (0,e) and x > y, then f(x) > f(y);
similarly, if z, y € (e, +o0) and = > y, then f(z) < f(y). Thus, if z > y,
we must have y € (0,e) and z € (e,+oo). Checkingy = 1 and y = 2
(the only possible values of y), we find that (x,y) = (4, 2) is a solution with
x # y. Therefore, all possible solutions are:

1Lz=y;

M509. Proposed by Izidor Hafner, Traska 25, Ljubljana, Slovenia.

The diagram below represents the net of a polyhedron in which the
faces of the solid are divided into smaller polygons. The task is to colour
the polygons (or number them), so that each face of the original solid is a
different colour.
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Solution by Robert Bilinski, Outremont, QC.

15\ /14]14\ /13

° 16 12 >
6 2 | 2 12211
17 11
sl 2 2 |15yt
18 10
18] N ET)

@ 3y3/a 8 9 13
11 3/,14 81 g\9 1|1 13

M60. Proposed by Mihaly Bencze, Brasov, Romania.

n

Determine all positive integers for which {Z \/EJ = n, where |z] is
k=1
the greatest integer less than or equal to x.

Solution by the proposer.

Let S,, = {ZZZI \/EJ We note that S; = 1, S» = 2, S3 = 4. For
n>3,8,>8.,-1+2. Thus, S,, = nonly forn =1, 2.
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M61. Proposed by theMayhem Staff.
You are given 54 weights which weigh 12, 22, 32, ..., 542. Group these
into three sets of equal weight.

Solution by Geneviéve Lalonde, Massey, ON.

Note that summing 9 consecutive squares n?, (n + 1)2, ..., (n + 8)2
yields 9n? +72n + 204 = 3(3n? + 24n + 68). Among these nine squares, we
cannot make 3 sets each totalling 3n? + 24n + 68 because (n + 8)2 cannot
be grouped with two of the other squares to give the desired total (as can be
easily checked). If we take

(n+1)2 n? (n + 2)2
Set1 ¢ (n+3)2 |, Set2 ¢ (n+5)2 |, Set3 ¢{ (n+4)% |,
(n +8)* (n+7)>* (n +6)*

the first two sets each total 3n? +24n+ 74 and the last totals 3n2? +24n+ 56.

Therefore, we can break our 54 weights into 6 groups of 9 and use our
sets above within each group of 9, making sure that each of our 3 sets contains
two of the subsets that total only 3n2 + 24n + 56. There are many solutions,
one of which is:

Set 1: {12, 67, 8%, 112, 13%, 187, 20%, 222, 272, 297,
312, 362, 392, 41%, 432, 482, 50%, 52?2},

Set2:  {22%,42% 9%, 10%, 15%, 172, 212, 232, 252, 302,
322,347, 387, 40%, 452, 472, 492, 54%},

Set 3: {32, 5%, 7%, 122, 14%, 16, 19%, 247 267, 287,
332,352, 372, 422, 44%  46%, 51%, 53%}.

Each of these groups sums to 17 985.

M62. Proposed by Richard Hoshino, Dalhousie University, Halifax,
Nova Scotia.

Let ABCD be a trapezoid where sides AB and C D are parallel and the
diagonals AC and BD intersect at point P. Suppose AB = 50, CD = 160,
and the area of triangle PAD is 2000. Determine the area of the trapezoid.

Solution by Geneviéve Lalonde, Massey, ON.

A B
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From AB || CD, we get /PAB = /PCD and /PBA = /PDC.
Thus, APAB and APCD are similar. If we name the heights of P from
AB and CD as h; and h,, respectively, we get

hi AB _ 5

he CD 16
Then h; = 5h and h, = 16h, for some real number h.
Using the notation [ABC] to represent the area of the figure ABC, we
have [ADC] = 1(160)(21h) = 1680h. We also have
[ADC] = [ADP] + [PDC] = 2000 + %(160)(16h) = 2000 + 1280h .

Setting these two expressions equal, we get h = 5; whence, the height of the
trapezoid is 21h = 105. Therefore, [ABCD] = (50 +160)(105) = 11025.

—_— N

Polya’s Paragon

Paul Ottaway

For this month’s installment, I have decided to explore some of the cu-
rious and interesting properties of sequences and series. To begin, I would
like to revisit a famous problem that is said to have been solved by the
famous mathematician Gauss when he was very young. The story goes that
his teacher was frustrated with how quickly he could solve the problems given
out in class. Therefore, he was assigned to sum the numbers from 1 to 100,
to keep him busy. Remarkably, in almost no time at all, he had solved the
problem, much to the teacher’s amazement.

Here is the trick he is said to have used:

S = 1 + 2 4+ ... 4+ 100,
S = 100 + 99 + ...+ 1,
28 = 101 + 101 + --- + 101,
2§ = 101-100,

S = 5050.

By writing the terms forward and backward, we are able to get a very
nice expression for twice the sum. The third line is the result of summing the
first two lines term by term. Since we know that there are exactly 100 terms,
we quickly arrive at the answer.
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We would like to be able to use this trick for finding other sums as
well. By generalizing, we will now call this a ‘technique’ which we can use
for all sorts of other situations. This time, we will start with an arithmetic
sequence where the first term is a, the terms increase by d, and there are n
terms. Here is what happens:

S = a + a+d + -4+ (a+(n—1)d),
S = (a+(n—-1)d) + (a+(n—-2)d) +---+ a,
28§ = (2a+(n—1)d) + (2a+(n—1)d) +---+ (2a+ (n—1)d),
25 = n(2a+ (n—1)d),

_ n(n —1)
S = na—i-#d.

We can use this formula to determine that the sum of the first n natural
numbers is exactly n(n 4+ 1)/2. To see this, use a = 1 and d = 1 in the
previous equation.

We might now ask ourselves what sort of sums we can achieve when
the terms do not form an arithmetic progression. Here are a few more sums
with interesting patterns that I will present without proof:

1
@ = 142+ +n,
n(n+1;(n+2) — 1.2+2.3+---+n'(n+1)'
n(n +1)(n +2)(n + 3)

= 1-2:34+2-3-4+4.-.
+n-(n+1)-(n+2).

4

We can use these identities to discover even more sums, like the sum
of squares shown here:

1?+2°+...4n? = (1-242-3+---+n-(n+1))

_ (1—|—2+---+n)
nn+1)(n+2) nn+1)

3 2
n(n+1)(2n + 1)

6
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Finally, 1 would like to look at numbers called ‘triangular’ numbers.
The &t triangular number is the sum of the first k£ natural numbers. The first
five triangular numbers are 1, 3, 6, 10, and 15. Is there an easy way to find
the sum of the first n triangular numbers? The answer is yes! Even though
they do not form an arithmetic sequence, we can still find their sum.

143464+ ——

n(n+1)

1241 2242 n?2+n
2 T Tt

(12+22+...+n2)

N[ =

+o 424t
1 (n(n+1)(2n+1)> 1 (n(n+1)>

2 6 2 2
n(n+1)(n + 2)
6 .

Now that you know some useful techniques and identities for finding sums,
here are a couple of problems for you to try:

1. Find the sum of the first n cubes. That is, find 12 + 23 + ... 4+ n3.

2. Find a relationship between your result from problem 1 and one of the
other identities used in this article.

3. Find the sum of the reciprocals of the triangular numbers. That is, find

BHie i

HINT: This is an infinite sum. Start by looking at half this sum, and
write each term as the difference of two fractions.

_—_—m NS —e————
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Three-Pile Nim with Blocking

Arthur Holshouser and Harold Reiter

1. Introduction

Nim, also known as Bouton’s Nim, is a two-player counter-pickup game
that is well known in combinatorial game theory. In this paper we develop
a winning strategy for a more complicated variation of Nim, in which exactly
one move can be blocked at each stage of the game. Remarkably, the winning
strategy for the more complicated version is much simpler than for ordinary
(Bouton’s) Nim.

Specifically, we explore a three-pile game with two players, a moving
player and a blocking player, whose roles alternate between moves. As in
ordinary Nim, a move consists of the removal of any number of counters
from any single pile. Before each move, including the first move, the blocking
player must eliminate exactly one of the moving player’s possible moves. For
example, if the moving player is confronted with piles of size 6, 10, and 10,
the blocking player could forbid the removal of 7 counters from the first of
the two 10-counter piles. A forbidden move is forgotten as soon as the next
move is made. The winner is the last player to make an allowed move.

2. Bouton’s Nim

Before developing the strategy for our game, let us review the strategy
for playing Bouton’s Nim. The general ideas actually apply to all “last player
wins” combinatorial games. The idea is to partition the set P of all possible
positions into two subsets S and U/, where the positions in S are “safe” to
move to and the positions in ¢ are “unsafe” to move to.

We say that a position v is accessible from a position u, and we write
u — v, if there is a move from u to v. Suppose there are two subsets S and
U which partition P (thatis, SUU = P and S NU = ¢) and which possess
the following three properties:

(1) From each position v in S, every position accessible from v belongs
tolU.

(2) From each position u in U, there is at least one position v in S which
is accessible from w.

(3) All terminal positions belong to S.

The sets S and U/ describe a winning strategy. A moving player faced with
a position in U4 simply moves to a position in S. That player can continue

Copyright © 2003 Canadian Mathematical Society
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to move to positions in S, ultimately winning the game. Such a strategy is
depicted in the diagram below.

Every move

Some move

In three pile Nim, the members of the set S can be described as fol-
lows. A position in which the piles are of sizes a, b and c is denoted by
(a, b, c). Associate with each such position the binary representation of the
three integers a, b, ¢, and align these representations vertically as though we
were adding them. If the number of 1’s in each column is even, we say that
the binary configuration is balanced, and the corresponding position belongs
to S. In other words, we take the sum in each column modulo 2. Note that
S and its complement P — S satisfy the three properties above.

Consider the game (13,15,17).

13 = 11 O 1
15 = 1 1 1 1
17 = 0o o [0]
Mod2Sum = 1 0 0 1 1

Notice that the first, fourth, and fifth columns have 1’s in the bottom
row, indicating that these columns have an odd number of 1’s. Also note that
the three entries in the row with the 17 that are boxed need to be changed so
that the columns they occupy become balanced. This can be done by replacing
the pile of 17 counters with one having 2 counters. The only winning move
is (13,15,17) — (13,15,2). The reason this move is unique is that the 1
in the leftmost column can be eliminated only by a move from the pile with
17 counters. The result can be depicted as:

13 = 1 1 0 1

15 = 1 1 1 1

2 = 1 0
Mod2Sum = 0 0 0 O

3. Blocking Nim

Now we consider a game where one move is blocked at each stage.
Remarkably, this apparently more complicated game yields a strategy that
does not require binary arithmetic. A solution is a partition (S, ) of the set
P of positions with the following properties:
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(a) Every terminal position belongs to S.

(b) For each position u in U, there are at least two moves from u to
positions in S.

(¢) For each position v in S, there is at most one position of S accessible
from v.

The figure below shows how the winning strategy for the blocking game
differs from that of the ordinary game.

All moves except one

At least two moves

When denoting a position by (a,b,c), we will generally require
a < b < c. In the proof, however, we do not always adhere to this
convention because the arithmetic makes it difficult to compare the sizes of
the piles once a move has been made. Using this notation, there are two
terminal positions: (0,0,0) and (0,0,1). The position (0,0,1) is terminal
because the move (0,0,1) — (0,0, 0) must be blocked.

Theorem 1 . Let S denote the set of all positions of the form (a, a, a), where
a > 0, together with the positions (a, b, c) such thata + b+ 1 = ¢, and let
U = P — S. Then the partition (S,U) of P satisfies conditions (a), (b), and
(c) above.

Proof: We can write S as the union of three sets:

§ = {(a,a,a)la € N}U{(a,a,c)|2a+1=c}
U{(a,b,c)Ja<banda+b+1=c}.

We can write U as:

U = {(a,b,c)la=b<candc # 2a+ 1}
U{(a,b,c)la<b<canda+b+1#c}.

To see condition (a), note that (0,0, 0) and (0,0, 1) both belong to S.

Let us show next that property (b) holds. Suppose that (a, b, ¢) belongs
toU. If a = b < cand ¢ # 2a + 1, then we have two cases to consider:
either (i) 2a + 1 > cor (ii) 2a + 1 < c. In case (i), there are two moves
to (¢ — a — 1,a,c), which is a member of S. That is, either of the piles
with a counters can be reduced to ¢ — a — 1 counters wherec —a —1 > 0
since a < c¢. In case (ii), there are two moves to positions in S, namely
(a,a,c) — (a,a,2a + 1) and (a,a,c) — (a,a,a).
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On the other hand, if a < b < cand ¢ # a + b + 1, we again consider
two cases: ()a+b+1>cand (ii)a+b+1 < c. If c>a+b+1, there are
two members of S we could move to, (a,b,a + b+ 1) and (a,b — a — 1, b).
The latter position is available because b6 — a > 1. In case (ii), the move
(a,b,¢) — (c—a—1,a,c) € Sisalways possible because 0 < c—a—1 < b.
Also, the move (a,b,¢) — (¢ — b — 1,b,¢) € S is possible when b < ¢
because 0 < ¢ — b —1 < a. When b = ¢, there are always two moves
(a,b,b) — (a,b—a—1,b) € S, since a < b, and we can reduce either pile
with b countersto b — a — 1.

To prove property (c), let (a,b,c) belongto S. If a = b = ¢, there
is no move to another member of S. If the position is of the form (a, a, b)
with 2a + 1 = b, there is only one move to another position of S, namely
(a, a,a), because any reduction in a pile of size a results in a position (e, a, b)
that does not satisfy e + a + 1 = b. And finally, if (a, b, ¢) satisfies a < b
and a + b+ 1 = ¢, then there is no move to a position of the form (a, a, a).
There is at most one move to a position for which the sum of the first two
smaller pile sizes is 1 less than the third. It would involve taking counters
from the largest of the three piles. =

4. Open Questions

We do not know how to extend this result to games with more than
three piles or to games in which the blocking player can block more than one
move. There is another version in which instead of blocking a single move,
the blocking player is allowed to block a single position. Thus, for example
the move from (2,2,2) to (1,2,2) could be prohibited. We can solve the
three-pile game but we cannot extend this result.
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