Mixed Exponential and Polynomial Congruences

Stanley Rabinowitz

Rarely in the mathematical literature does one find a divisibility result or a congruence that includes both an exponential term and a polynomial term. For example, for all positive integers n,

$$64 \mid (3^{2n+3} + 40n - 27)$$

and

$$3^{2n+5} + 160n^2 \equiv 56n + 243 \pmod{512}$$

which come from chapter 16 of Wolstenholme [2]. It is the purpose of this note to investigate such congruences.

We start with a preliminary result.

Lemma. Let c, d, k, and m be integers with $c > 0$, $\gcd(c, m) = 1$, and $\gcd(k, m) = 1$. If there exists a polynomial $f(x)$ of degree d such that for all integers $n \geq 0$,

$$k \cdot c^n \equiv f(n) \pmod{m},$$

then

$$m \mid (c - 1)^{d+1}.$$

Proof. Suppose such a polynomial $f(x)$ exists. Let Δ denote the forward difference operator. That is, for any function $h(n)$,

$$\Delta h(n) = h(n + 1) - h(n).$$

Let Δ^d represent a d-fold repetition of Δ. It is well known (Boole [1]) or easily shown by induction that

$$\Delta k f(n) = k \Delta f(n),$$

$$\Delta^d c^n = c^{n-d} (c-1)^d,$$

and

$$\Delta^{d+1} f(n) = 0 \quad \text{if} \quad \deg f = d.$$

Applying the difference operator $d + 1$ times in succession to the equation $k \cdot c^n \equiv f(n) \pmod{m}$ yields

$$k \cdot c^{n-d-1} (c-1)^{d+1} \equiv 0 \pmod{m},$$
or \(m \mid k \cdot c^{n-d-1}(c-1)^{d+1} \). But since \(\gcd(m, c) = 1 \) and \(\gcd(m, k) = 1 \), we must have \(m \mid (c-1)^{d+1} \) as required.

Now we can state our result in more generality.

Theorem 1. Let \(a, b, c, d, k, \) and \(m \) be integers with \(a > 0, c > 0, \gcd(c, m) = 1, \) and \(\gcd(k, m) = 1 \). If there exists a polynomial \(f(x) \) of degree \(d \) such that for all integers \(n \geq 0 \),

\[
k \cdot c^{an+b} \equiv f(n) \pmod{m},
\]

then

\[
m \mid (c^{a} - 1)^{d+1}.
\]

Proof. Replace \(c \) by \(c^a \) is our lemma, noting that if \(\gcd(c^a, m) = 1 \), then \(\gcd(c, m) = 1 \). Also, replace \(k \) by \(k \cdot c^b \), noting that if \(\gcd(k, m) = 1 \) and \(\gcd(c, m) = 1 \), then \(\gcd(k \cdot c^b, m) = 1 \). This gives us Theorem 1.

We can also prove the converse.

Theorem 2. Let \(a, b, c, d, k, \) and \(m \) be positive integers such that

\[
m \mid (c^{a} - 1)^{d+1}.
\]

Then there exists a polynomial \(f(x) \) of degree at most \(d \) such that for all integers \(n \geq 0 \),

\[
k \cdot c^{an+b} \equiv f(n) \pmod{m}.
\]

In particular, one such polynomial is

\[
f(x) = \sum_{j=0}^{d} \binom{x}{j} k c^b (c^a - 1)^j. \quad (*)
\]

Proof. By the Binomial Theorem, we have

\[
(y + 1)^n = \sum_{j=0}^{n} \binom{n}{j} y^j.
\]

Let \(y = c^a - 1 \) and note that every term involving \(y^j \) where \(j > d \) is divisible by \(y^{d+1} = (c^a - 1)^{d+1} \) and thus is also divisible by \(m \) by our hypothesis that \(m\mid(c^{a} - 1)^{d+1} \). Thus, these terms are congruent to 0 modulo \(m \), and we are left with

\[
(y + 1)^n \equiv \sum_{j=0}^{d} \binom{n}{j} y^j \pmod{m},
\]

or

\[
c^{an} \equiv \sum_{j=0}^{d} \binom{n}{j} (c^a - 1)^j \pmod{m}.
\]
Multiplying both sides by \(k \cdot c^b \) shows that (*) is indeed the desired polynomial function of degree at most \(d \).

Note that the function \(f \) is not unique; there may be other polynomial functions of degree \(d \) meeting the given conditions. Note also that if \(m \mid (c^a - 1)^{d+1} \), then it is not hard to show that \(c \) and \(m \) are relatively prime. Note also that the polynomial \(f \) that we found has degree exactly \(d \) if \(\gcd(k, m) = 1 \) and \(m \) does not divide \((c^a - 1)^d \).

Examples.

Now that we have our general results, we can crank out interesting examples. Here are but just a few.

\[
\begin{align*}
29^{2n} & \equiv 140n + 1 \pmod{700}, \\
2002^n & \equiv 138n + 1 \pmod{207}, \\
11^n & \equiv 50n^2 - 40n + 1 \pmod{1000}, \\
19^n & \equiv 18n^2 + 1 \pmod{72}, \\
5^n & \equiv 96n^3 - 24n^2 - 68n + 1 \pmod{256}, \\
5^{2n} & \equiv 162n^5 + 540n^4 + 846n^3 + 288n^2 - 354n + 1 \pmod{1458}.
\end{align*}
\]

References

Stanley Rabinowitz
12 Vine Brook Road
Westford
MA 01886 USA
stan@MathProPress.com