Since \(OM = OC \), it follows that from (1) and (2)
\[\triangle OMB \equiv \triangle OCD. \]
Thus, \(\angle OBM = \angle ODC \); that is
\[\angle OBC = \angle ODC. \]
Therefore, \(B, O, C, D \) are concyclic.

That completes this number. Send me your nice solutions, generalizations, and comments, as well as Olympiad Contests!

Niels H. Abel (1802–1829)

This year is the 200\(^{th}\) anniversary of the birth of Niels Abel. Here are some quotations from him:

If you disregard the very simplest cases, there is in all of mathematics not a single infinite series whose sum has been rigorously determined. In other words, the most important parts of mathematics stand without a foundation.

“[A reply to a question about how he got his expertise:]”
By studying the masters and not their pupils.

“[About Gauss' mathematical writing style]”
He is like the fox, who effaces his tracks in the sand with his tail.