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On a \Problem of the Month"

Murray S. Klamkin

In the problem of the month [1999 : 106], one was to prove that

p
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p
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p
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c ,

where a, b, c are sides of a triangle.

It is to be noted that this inequality will follow immediately from the

Majorization Inequality [1]. Here, if A and B are vectors (a1; a2; : : : ; an),

(b1; b2; : : : ; bn) where a1 � a2 � � � � � an, b1 � b2 � � � � � bn, and

a1 � b1, a1+a2 � b1+b2, : : : , a1+a2+ � � �+an�1 � b1+b2+ � � �+bn�1,

a1 + a2 + � � � + an = b1 + b2 + � � � + bn, we say that A majorizes B and

write it as A � B. Then, if F is a convex function,

F (a1) + F (a2) + � � �+ F (an) � F (b1) + F (b2) + � � �+ F (bn) .

If F is concave, the inequality is reversed.

For the triangle inequality, we can assume without loss of generality

that a � b � c. Then a + b � c � a, (a + b � c) + (a + c � b) � a + b,

and (a+ b� c) + (a+ c� b) + (b+ c� a) = a+ b+ c. Therefore, if F is

concave,

F (a+ b� c) + F (b+ c� a) + F (c+ a� b) � F (a) + F (b) + F (c)

(for the given inequality, F =
p
x is concave).

As to the substitution a = y + z, b = z + x, c = x + y which was

used in the referred to solution and was called the Ravi Substitution, this

transformation was known and used before he was born. Geometrically, x,

y, z are the lengths which the sides are divided into by the points of tangency

of the incircle. Thus, we have the following implications for any triangle

inequality or identity:

F (a; b; c) � 0 (=) F (y + z; z + x; x+ y) � 0 ,

F (x; y; z) � 0 (=) F ((s� a); (s� b); (s� c)) � 0

(here s is the semiperimeter). This transformation eliminates the trouble-

some triangle constraints and lets one use all the machinery for a set of three

non-negative numbers.
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Another big plus for the Majorization Inequality is that we can obtain

both upper and lower bounds subject to other kinds of constraints. Here are

two examples:

(1) Consider the bounds on sin a1 + sin a2 + � � � + sin an where n � 4,
�

2
� ai � 0 and

P
ai = S � 2�. Since
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we have

4 � sin a1 + sin a2 + � � �+ sin an � n sin

�
S

n

�
.

(2) Consider the bounds on a
2
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n
where

P
ai = S ( � n) and

the ai's are positive integers. Since
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we have

(S � n+ 1)2 + n� 1 � a
2

1
+ a

2

2
+ � � �+ a

2

n
� n

�
S

n

�2
.

For many other applications, see [1].
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