Since \(p \leq 4 \) and \(z \leq 1 \), the inequality clearly holds for \(z \leq 1/2 \). For \(z > 1/2 \), we have

\[
2p(1 - 2z) + z(5z + 3) \geq 8(1 - 2z) + z(5z + 3) = (1 - z)(8 - 5z) \geq 0 .
\]

It now follows that the only time equality can occur is if \(a = 1 \) and \(x = y = z = 1 \), or \(a = 1 \) and \(z = 0 \), \(x = y = 2 \).

Case 2. Here \(p > 4 \). Let \(y = z = \varepsilon \). Then \(x \approx p/2\varepsilon \), so that (2) holds. Now let \(z = 0 \), \(x = y \). Then \(x = y = \sqrt{p} \), so that the inequality sign in (2) is reversed.

That completes the *Corner* for this issue. Send me your Olympiad Contest materials and your nice solutions to problems from the *Corner*.

Mathematical Poems

1. no solution
 my mind is a matrix
 that has been reduced
 into row echelon form
 and proven to be
 - inconsistent

2. i'm tired of being a zero vector
 i'm tired of being a zero vector
 with no direction
 no dimension
 and no magnitude;
 what i need is another element
 - but that would be
 - a contradiction
 of my definition

Eileen Tupaz, student, Ateneo University, Quezon City, Philippines.