THE ACADEMY CORNER
No. 22
Bruce Shawyer

All communications about this column should be sent to Bruce Shawyer, Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, Newfoundland, Canada. AIC 5S7

APICS Mathematics Competition 1998
held at Saint Mary's University, Halifax, Nova Scotia,

Rules:

- Teams of two are to work in cooperation and to submit one set of answers each.
- No notes, calculators, or other such aids are permitted.
- You may not communicate with noncontestants (except invigilators) or other teams.
- There are nine questions.

1. Fred and Cathy play the following game. They are given the polynomial \(f(x) = ax^3 + bx^2 + cx + d \). They take turns, Cathy first, in replacing \(a \), then \(b \), then \(c \) and finally \(d \) with positive integers. Fred wins if the resulting polynomial has at least two distinct roots. Who should win and what is the winning strategy?

2. Define the integer sequence \(\{T_n\} \) by \(T_0 = 0 \), \(T_1 = 1 \), \(T_2 = 2 \) and \(T_{n+1} = T_n + T_{n-1} + T_{n-2} \) \((n \geq 2)\). Compute

\[
S := \sum_{n=0}^{\infty} \frac{T_n}{2^n}.
\]

3. Let \(X_1, X_2, \ldots, X_n \) be independent, integer-valued random variables with \(p = \text{probability}\{X_k \text{ is even}\} \). Form the sum \(S_n \) of the random variables. Show that the probability that the sum is even is

\[
\left[1 + (2p - 1)^n\right]/2.
\]
4. Show that there do not exist four points in the Euclidean plane such that the pairwise distances between them are all odd integers.

5. If \(\{a_n\} \) is a sequence of positive integers such that
\[
\lim_{n \to \infty} \frac{a_n}{a_1 + a_2 + \cdots + a_n} = 0,
\]
show that there is a sequence \(\{b_n\} \) of positive integers such that for every positive integer \(n \geq 2 \)
\[
\frac{b_n}{b_1 + b_2 + \cdots + b_n} \leq \frac{1}{3},
\]
and for some positive integer \(N \) we have \(a_n = b_n \) for all \(n \geq N \).

6. For \(a > 1 \) evaluate
\[
\int_0^a x a^{(-|\log_a x|)} \, dx,
\]
where \([t]\) denotes the greatest integer less than or equal to \(t \).

7. Let \(ABCD \) be a cyclic quadrilateral, inscribed in a circle \(\omega \). Let \(A', B', C', D' \) be the points where the tangents at \(A \) and \(B \), at \(B \) and \(C \), at \(C \) and \(D \) and at \(D \) and \(A \), respectively, intersect. Prove that the lines \(AC, BD, A'C' \) and \(B'D' \) are concurrent; that is, they intersect at one point.

8. The expression
\[
\frac{\left(\ldots\left((x - 2)^2 - 2\right)^2 - 2\right)^2 - \ldots - 2\right)^2}{n - \text{times}}
\]
is multiplied out and coefficients of equal powers are collected. Find the coefficient of \(x^2 \).

9. Let \(f(n) = 2n^2 + 14n + 25 \). We see that \(f(0) = 25 = 5^2 \). Find two positive integers \(n \) such that \(f(n) \) is a perfect square.

The winning teams were:

1. Ian Caines and Alex Fraser — Dalhousie University;
2. Dave Morgan and Shannon Sullivan — Memorial University;
3. Tara Small and Kit Yan Wong — University of New Brunswick.

All six students received a free subscription to \textit{CRUX with MAYHEM}, in addition to some other prizes.

We will publish solutions later this year. Will your name be attached to a solution? Send them to me as soon as you can!

Thanks to Karl Dilcher, Dalhousie University, Halifax, Nova Scotia, for sending me the \LaTeX file.