23: No 5  SEPTEMBER / SEPTEMBRE 1997

Published by:
Canadian Mathematical Society
Société mathématique du Canada
577 King Edward, POB/CP 450-A
Ottawa, ON K1N 6N5
Fax/Télec: 613 565 1539

©CANADIAN MATHEMATICAL SOCIETY 1996. ALL RIGHTS RESERVED.

SYNOPSIS

257 The Academy Corner: No. 12  Bruce Shawyer

Featuring the Hints and Answers to the “Bernoulli Trials 1997”
by Christopher Small

This is a new style of mathematics competition for University students,
held at the University of Waterloo. Students are given a few minutes
to consider a mathematical conjecture and decide whether it is true or
false.

260 The Olympiad Corner: No. 183  R.E. Woodrow

Featuring Problems from the 1997 Canadian Mathematical Olympiad;
the 26th United States of America Mathematical Olympiad; selected
problems from the 3rd Ukrainian Mathematical Olympiad; and con-
testants solutions to the Problems from the 1997 Canadian Mathe-
matical Olympiad.

272 Book Reviews  Andy Liu

This month’s books are:
The Puzzle Arcade
by Jerry Slocum,
and
Quantum Quandaries
edited by Timothy Weber,
both reviewed by Andy Liu.

274 A Fermat-Fibonacci Collaboration
K.R.S. Sastry

Fermat had asked for an example of three squares in arithmetic progres-
sion with their common difference being a square. This is impossible.
Sastry replaces “squares” by “triangular numbers” and finds it is pos-
sible. Fibonacci numbers play a significant role in the solution.

278 The Skoliad Corner: No. 23  R.E. Woodrow

Featuring the 1995 Prince Edward Island Mathematics Competition;
and solutions to the 1995 Twelfth W.J. Blundon Contest [1997: 218–
219].
This month’s “free sample” is

2251. Proposed by Victor Oxman, University of Haifa, Haifa, Israel.

In the plane, you are given a circle (but not its centre), and points A, K, B, D, C on it, so that arc \( AK = KB \) and arc \( BD = DC \).

Construct, using only an unmarked straightedge, the mid-point of arc \( AC \).