The following papers are the latest research papers available from the
Canadian Mathematical Bulletin.
The papers below are all fully peerreviewed and we vouch for the research inside.
Some items are labelled Author's Draft,
and others are identified as Published.
As a service to our readers, we post new papers as soon as the science is right, but before official publication; these are the papers marked Author's Draft.
When our copy editing process is complete and the paper now has our official form, we replace the
Author's Draft
with the Published version.
All the papers below are scheduled for inclusion in a Print issue. When that issue goes to press, the paper is moved from this Online First web page over to the main CMB Digital Archive.
Let $(X,d)$ be a metric space and $J\subseteq [0,\infty)$ be
nonempty. We study the structure of the arbitrary intersections
of
Lipschitz algebras, and define a special Banach subalgebra of
$\bigcap_{\gamma\in J}\operatorname{Lip}_\gamma X$, denoted by
$\operatorname{ILip}_J X$. Mainly,
we investigate $C$character amenability of $\operatorname{ILip}_J X$, in
particular Lipschitz algebras. We address a gap in the proof
of a
recent result in this field. Then we remove this gap, and obtain
a
necessary and sufficient condition for $C$character amenability
of $\operatorname{ILip}_J X$, specially Lipschitz algebras, under an additional
assumption.
We give a new proof that bounded noncommutative functions
on polynomial polyhedra
can be represented by a realization formula, a generalization
of the transfer function realization
formula for bounded analytic functions on the unit disk.
In this paper, periodic steadystate of a liquid film flowing
over a periodic uneven wall is investigated via a classical method.
Specifically, we analyze a longwave model that is valid at
the nearcritical Reynolds number. For the periodic wall surface,
we construct an iteration scheme in terms of an integral form
of the original steadystate problem. The uniform convergence
of the scheme is proved so that we can derive the existence and
the uniqueness, as well as the asymptotic formula, of the periodic
solutions.
In this paper, we show that the Möbius invariant
function space $\mathcal {Q}_p$ can be generated by variant
Dirichlet type spaces
$\mathcal{D}_{\mu, p}$ induced by finite positive Borel measures
$\mu$ on the open unit disk. A criterion for the equality between
the space $\mathcal{D}_{\mu, p}$ and the usual Dirichlet type
space $\mathcal {D}_p$ is given. We obtain a sufficient condition
to construct different $\mathcal{D}_{\mu, p}$ spaces
and we provide examples.
We establish decomposition theorems for $\mathcal{D}_{\mu,
p}$ spaces, and prove that the nonHilbert space $\mathcal
{Q}_p$ is equal to the intersection of Hilbert spaces $\mathcal{D}_{\mu,
p}$. As an application of the relation between $\mathcal {Q}_p$
and $\mathcal{D}_{\mu, p}$ spaces, we also obtain that there
exist different $\mathcal{D}_{\mu, p}$ spaces; this is a trick
to prove the existence without constructing examples.
A classification of simple weight modules over the Schrödinger
algebra is given. The Krull and the global dimensions are found
for the centralizer $C_{\mathcal{S}}(H)$ (and some of its prime factor
algebras) of the Cartan element $H$ in the universal enveloping
algebra $\mathcal{S}$ of the Schrödinger (Lie) algebra. The simple
$C_{\mathcal{S}}(H)$modules are classified. The Krull and the global
dimensions are found for some (prime) factor algebras of the
algebra $\mathcal{S}$ (over the centre). It is proved that some (prime)
factor algebras of $\mathcal{S}$ and $C_{\mathcal{S}}(H)$ are tensor homological/Krull
minimal.
We calculate all $\ell^2$Betti numbers of the universal discrete
Kac quantum groups $\hat{\mathrm U}^+_n$ as well as their halfliberated
counterparts $\hat{\mathrm U}^*_n$.
Using known operatorvalued Fourier multiplier results on vectorvalued
Hölder continuous function spaces $C^\alpha (\mathbb R; X)$, we completely
characterize the $C^\alpha$wellposedness of the first order
degenerate differential equations with finite delay $(Mu)'(t)
= Au(t) + Fu_t + f(t)$ for $t\in\mathbb R$
by the boundedness of the $(M, F)$resolvent of $A$ under suitable
assumption on the delay operator $F$, where $A, M$ are closed
linear
operators on a Banach space $X$ satisfying $D(A)\cap D(M) \not=\{0\}$,
the delay operator $F$ is a bounded linear operator
from $C([r, 0]; X)$ to $X$ and $r \gt 0$ is fixed.
For smooth functions $a_1, a_2, a_3, a_4$ on a quaternion Heisenberg
group, we characterize
the existence of solutions of the partial differential operator
system $X_1f=a_1, X_2f=a_2, X_3f=a_3,$ and $X_4f=a_4$.
In addition, a formula for the solution function $f$ is deduced
provided the solvability of the system.
Let $1\leq p\lt \infty$, and let $G$ be a discrete group. We give
a sufficient and necessary condition
for weighted translation operators on the Lebesgue space $\ell^p(G)$
to be densely disjoint hypercyclic.
The characterization for the dual of a weighted translation to
be densely disjoint hypercyclic is also obtained.
Generalized orthogonal matching pursuit (gOMP) algorithm has
received much attention in recent years as a natural extension
of
orthogonal matching pursuit (OMP). It is used to recover sparse
signals in compressive sensing. In this paper, a new bound is
obtained for the exact reconstruction of every $K$sparse signal
via
the gOMP algorithm in the noiseless case. That is, if the restricted
isometry constant (RIC) $\delta_{NK+1}$ of the sensing matrix
$A$
satisfies $ \delta_{NK+1}\lt \frac{1}{\sqrt{\frac{K}{N}+1}}$, then
the
gOMP can perfectly recover every $K$sparse signal $x$ from $y=Ax$.
Furthermore, the bound is proved to be sharp.
In the noisy case, the above bound on RIC combining with an
extra condition on the minimum
magnitude of the nonzero components of $K$sparse signals can
guarantee
that the gOMP selects all of support indices of the $K$sparse
signals.
We make some elementary observations concerning subcritically
Stein
fillable contact structures on $5$manifolds.
Specifically, we determine the diffeomorphism type of such
contact manifolds in the case the fundamental group is finite
cyclic,
and we show that on the $5$sphere the standard contact structure
is the unique subcritically fillable one. More generally,
it is shown that subcritically fillable contact structures
on simply connected $5$manifolds are determined by their
underlying almost contact structure. Along the way, we discuss
the
homotopy classification of almost contact structures.
In this paper, we prove that the following singular integral
defined by
$$T_{\Omega,a}f(x)=\operatorname{p.v.}\int_{\mathbb{R}^{d}}\frac{\Omega(xy)}{xy^d}\cdot m_{x,y}a\cdot
f(y)dy$$
is bounded on $L^p(\mathbb{R}^d)$ for $1\lt p\lt \infty$ and is of weak type
(1,1), where $\Omega\in L\log^+L(\mathbb{S}^{d1})$ and
$m_{x,y}a=:\int_0^1a(sx+(1s)y)ds$
with $a\in L^\infty(\mathbb{R}^d)$ satisfying some restricted conditions.
Let $R$ be a prime ring with extended
centroid $C$, $Q$ maximal right ring of quotients of $R$, $RC$
central closure of $R$ such that $dim_{C}(RC)
\gt 4$, $f(X_{1},\dots,X_{n})$
a multilinear polynomial over $C$ which is not centralvalued
on $R$ and $f(R)$ the set of all evaluations of the multilinear
polynomial $f\big(X_{1},\dots,X_{n}\big)$ in $R$. Suppose that
$G$ is a nonzero generalized derivation of $R$ such that $G^2\big(u\big)u
\in C$ for all $u\in f(R)$ then one of the following conditions
holds:
(I) there exists $a\in Q$ such that $a^2=0$ and
either $G(x)=ax$ for all $x\in R$ or $G(x)=xa$ for all $x\in
R$;
(II) there exists $a\in Q$ such that $0\neq a^2\in
C$ and either $G(x)=ax$ for all $x\in R$ or $G(x)=xa$ for all
$x\in R$ and $f(X_{1},\dots,X_{n})^{2}$ is centralvalued on
$R$;
(III) $char(R)=2$ and one of the following holds:
(i) there exist $a, b\in Q$ such that $G(x)=ax+xb$ for all
$x\in R$ and $a^{2}=b^{2}\in C$;
(ii) there exist $a, b\in Q$ such that $G(x)=ax+xb$ for all
$x\in R$, $a^{2}, b^{2}\in C$ and $f(X_{1},\ldots,X_{n})^{2}$
is centralvalued on $R$;
(iii) there exist $a \in Q$ and an $X$outer derivation $d$
of $R$ such that $G(x)=ax+d(x)$ for all $x\in R$, $d^2=0$ and
$a^2+d(a)=0$;
(iv) there exist $a \in Q$ and an $X$outer derivation $d$
of $R$ such that $G(x)=ax+d(x)$ for all $x\in R$, $d^2=0$,
$a^2+d(a)\in C$ and $f(X_{1},\dots,X_{n})^{2}$ is centralvalued
on $R$.
Moreover, we characterize the form of nonzero generalized derivations
$G$ of $R$ satisfying $G^2(x)=\lambda x$ for all $x\in R$, where
$\lambda \in C$.
A precise quantitative version of the following qualitative statement
is proved: If a finite dimensional normed space contains approximately
Euclidean subspaces of all proportional dimensions, then every
proportional dimensional quotient space has the same property.
Let \(X\) be a CW complex with a continuous action of a topological
group \(G\).
We show that if \(X\) is equivariantly formal for singular
cohomology
with coefficients in some field \(\Bbbk\), then so are all symmetric
products of \(X\)
and in fact all its \(\Gamma\)products.
In particular, symmetric products
of quasiprojective Mvarieties are again Mvarieties.
This generalizes a result by Biswas and D'Mello
about symmetric products of Mcurves.
We also discuss several related questions.
For an analytic curve $\gamma:(a,b)\rightarrow \mathbb C,$ the set of
values approached by $\gamma(t),$ as $t\searrow a$ and as $t\nearrow
b$ can be any two continuua of $\mathbb C\cup\{\infty\}.$
Suppose $G$ is a connected complex Lie group and $H$ is a closed
complex subgroup.
Then there exists a closed complex subgroup $J$ of $G$ containing
$H$ such that
the fibration $\pi:G/H \to G/J$ is the holomorphic reduction
of $G/H$, i.e., $G/J$ is holomorphically
separable and ${\mathcal O}(G/H) \cong \pi^*{\mathcal O}(G/J)$.
In this paper we prove that if $G/H$ is pseudoconvex, i.e.,
if
$G/H$ admits a continuous plurisubharmonic exhaustion function,
then $G/J$ is Stein and $J/H$ has no nonconstant holomorphic
functions.
We show by means of an example in $\mathbb C^3$ that Gromov's
theorem on the presence of attached holomorphic discs for compact
Lagrangian manifolds is not true in the subcritical
realanalytic case, even in the absence of an obvious obstruction,
i.e, polynomial convexity.
The classical result of Nevanlinna states that two nonconstant
meromorphic functions on the complex plane having the
same images for five distinct values must be identically equal
to each other. In this paper, we give a similar uniqueness theorem for the Gauss maps of complete minimal surfaces in Euclidean
fourspace.
We give a characterization of $C^{\ast}$normed algebras, among
certain involutive normed ones. This is done through the existence
of enough specific positive functionals. The same question is
also
examined in some non normed (topological) algebras.
In this paper, we consider the following
critical Kirchhoff type equation:
\begin{align*}
\left\{
\begin{array}{lll}

\left(a+b\int_{\Omega}\nabla u^2
\right)\Delta u=Q(x)u^4u + \lambda u^{q1}u,~~\mbox{in}~~\Omega,
\\
u=0,\quad \text{on}\quad \partial \Omega,
\end{array}
\right.
\end{align*}
By using variational methods that are constrained to the Nehari
manifold,
we prove that the above equation has a ground state solution
for the case when $3\lt q\lt 5$.
The relation between the number of maxima of $Q$
and the number of positive solutions for the problem is also
investigated.
We study linear projections on Plücker space whose restriction
to the Grassmannian is a nontrivial branched
cover.
When an automorphism of the Grassmannian preserves the fibers,
we show that the Grassmannian is necessarily
of $m$dimensional linear subspaces in a symplectic vector
space of dimension $2m$, and the linear map is
the Lagrangian involution.
The Wronski map for a selfadjoint linear differential operator
and pole placement map for
symmetric linear systems are natural examples.
Fix an irreducible (finite) root system $R$ and a choice
of positive roots. For any algebraically closed field $k$ consider the almost simple, simply connected algebraic group $G_k$ over $k$ with root system $k$. One associates to any dominant weight $\lambda$ for $R$ two $G_k$modules with highest weight $\lambda$, the
Weyl module $V (\lambda)_k$ and its simple quotient $L (\lambda)_k$.
Let $\lambda$ and $\mu$ be dominant weights with $\mu \lt \lambda$ such
that
$\mu$ is maximal with this property. Garibaldi, Guralnick, and
Nakano
have asked under which condition there exists $k$ such that $L
(\mu)_k$
is a composition factor of $V (\lambda)_k$, and they exhibit an
example
in type $E_8$ where this is not the case. The purpose of this
paper
is to to show that their example is the only one. It contains
two proofs
for this fact, one that uses a classification of the possible
pairs $(\lambda, \mu)$,
and another one that relies only on the classification
of root systems.
Alfred Schild has established conditions
that Lorentz transformations map worldvectors $(ct,x,y,z)$ with
integer coordinates onto vectors of the same kind. These transformations
are called integral Lorentz transformations.
The present paper contains supplements to
our earlier work
with a new focus on group theory. To relate the results to the
familiar matrix group nomenclature we associate Lorentz transformations
with matrices in $\mathrm{SL}(2,\mathbb{C})$. We consider the
lattice of subgroups of the group originated in Schild's paper
and obtain generating sets for the full group and its subgroups.
A $C^{*}$algebra $A$ has the ideal property if any ideal
$I$ of $A$ is generated as a closed two sided ideal by the projections
inside the ideal. Suppose that the limit $C^{*}$algebra $A$
of inductive limit of direct sums of matrix algebras over spaces
with uniformly bounded dimension has ideal property. In this
paper we will prove that $A$ can be written as an inductive limit
of certain very special subhomogeneous algebras, namely, direct
sum of dimension drop interval algebras and matrix algebras over
2dimensional spaces with torsion $H^{2}$ groups.
Motivated by a question of A. Skalski and P.M. Sołtan (2016)
about inner faithfulness of the S. Curran's map of extending
a quantum increasing sequence to a quantum permutation, we revisit
the results and techniques of T. Banica and J. Bichon (2009)
and study some grouptheoretic properties of the quantum permutation
group on $4$ points. This enables us not only to answer the aforementioned
question in positive in case $n=4, k=2$, but also to classify
the automorphisms of $S_4^+$, describe all the embeddings $O_{1}(2)\subset
S_4^+$ and show that all the copies of $O_{1}(2)$ inside $S_4^+$
are conjugate. We then use these results to show that the converse
to the criterion we applied to answer the aforementioned question
is not valid.
Let $R$ be a ring. A map $f: R\rightarrow R$
is additive if $f(a+b)=f(a)+f(b)$ for all elements $a$ and $b$
of $R$.
Here a map $f: R\rightarrow R$ is called unitadditive if $f(u+v)=f(u)+f(v)$
for all units $u$ and $v$ of $R$. Motivated by a recent result
of Xu, Pei and Yi
showing that, for any field $F$, every
unitadditive map of ${\mathbb M}_n(F)$ is additive for all $n\ge
2$, this paper is about the question when every unitadditive
map of a ring is additive. It is proved that every unitadditive
map of a semilocal ring $R$ is additive if and only if either
$R$ has no homomorphic image isomorphic to $\mathbb Z_2$ or $R/J(R)\cong
\mathbb Z_2$ with $2=0$ in $R$. Consequently, for any semilocal
ring $R$, every unitadditive map of ${\mathbb M}_n(R)$ is additive
for all $n\ge 2$. These results are further extended to rings
$R$ such that $R/J(R)$ is a direct product of exchange rings
with primitive factors Artinian. A unitadditive map $f$ of a
ring $R$ is called unithomomorphic if $f(uv)=f(u)f(v)$ for all
units $u,v$ of $R$. As an application, the question of when every
unithomomorphic map of a ring is an endomorphism is addressed.
Let $R$ be an $n!$torsion free semiprime ring with
involution $*$ and with extended centroid $C$, where $n\gt 1$ is
a positive integer. We characterize $a\in K$, the Lie algebra
of skew elements in $R$, satisfying $(\operatorname{ad}_a)^n=0$ on $K$. This
generalizes both Martindale and Miers' theorem
and the theorem of Brox et al.
To prove it we
first prove that if $a, b\in R$ satisfy
$(\operatorname{ad}_a)^n=\operatorname{ad}_b$ on
$R$, where either $n$ is even or $b=0$, then
$\big(a\lambda\big)^{[\frac{n+1}{2}]}=0$
for some $\lambda\in C$.
This paper gives an equivalent form of Picard's
theorem via entire solutions of the functional equation $f^2+g^2=1$,
and then its improvements and applications to certain nonlinear
(ordinary and partial) differential equations.
It is known that every Toeplitz matrix $T$ enjoys a circulant
and skew circulant splitting (denoted by CSCS)
i.e., $T=CS$ with $C$ a circulant matrix and $S$ a skew circulant
matrix. Based on the variant of such a splitting (also referred
to as CSCS), we first develop classical CSCS iterative methods
and then introduce shifted CSCS iterative methods for solving
hermitian positive definite Toeplitz systems in this paper. The
convergence of each method is analyzed. Numerical experiments
show that the classical CSCS iterative methods work slightly
better than the GaussSeidel (GS) iterative methods if the CSCS
is convergent, and that there is always a constant $\alpha$ such
that the shifted CSCS iteration converges much faster than the
GaussSeidel iteration, no matter whether the CSCS itself is
convergent or not.
We provide normal forms and the global phase portraits on the
Poincaré disk for all Abel quadratic polynomial differential
equations of the second kind with $\mathbb Z_2$symmetries.
We investigate the moduli space of sheaves supported on space
curves of degree $4$ and having Euler characteristic $1$.
We give an elementary proof of the fact that this moduli space
consists of three irreducible components.
In this note we prove the following surprising characterization:
if
$X\subset {\mathbb A}^n$ is an (embedded, nonempty, proper)
algebraic variety defined over a
field $k$ of characteristic zero, then $X$ is a hypersurface
if and only if the module $T_{{\mathcal O}_{{\mathbb
A}^n}/k}(X)$ of logarithmic vector fields of
$X$ is a reflexive ${\mathcal
O}_{{\mathbb A}^n}$module. As a consequence of this result,
we derive that if $T_{{\mathcal O}_{{\mathbb A}^n}/k}(X)$ is a
free ${\mathcal
O}_{{\mathbb A}^n}$module, which is shown to be equivalent
to the freeness of the $t$th exterior power of $T_{{\mathcal O}_{{\mathbb
A}^n}/k}(X)$ for some (in fact, any) $t\leq n$, then necessarily
$X$ is a Saito free divisor.
In this paper, we obtain some characterizations of the (strong)
BirkhoffJames orthogonality for elements of Hilbert $C^*$modules
and certain elements of $\mathbb{B}(\mathscr{H})$.
Moreover, we obtain a kind of Pythagorean relation for bounded
linear operators.
In addition, for $T\in \mathbb{B}(\mathscr{H})$ we prove that if the
norm attaining
set $\mathbb{M}_T$ is a unit sphere of some finite dimensional
subspace $\mathscr{H}_0$ of $\mathscr{H}$ and $\T\_{{{\mathscr{H}}_0}^\perp}
\lt \T\$, then for every $S\in\mathbb{B}(\mathscr{H})$, $T$ is the strong
BirkhoffJames orthogonal to $S$ if and only if there exists
a unit vector $\xi\in {\mathscr{H}}_0$ such that $\T\\xi =
T\xi$ and $S^*T\xi = 0$.
Finally, we introduce a new type of approximate orthogonality
and investigate this notion in the setting of inner product $C^*$modules.
It is known that a biorderable group has no generalized torsion
element,
but the converse does not hold in general.
We conjecture that the converse holds for the fundamental groups
of $3$manifolds,
and verify the conjecture for nonhyperbolic, geometric $3$manifolds.
We also confirm the conjecture for some infinite families of
closed hyperbolic $3$manifolds.
In the course of the proof,
we prove that each standard generator of the Fibonacci group
$F(2, m)$ ($m \gt 2$) is a generalized torsion element.
We show under some conditions that a Gorenstein ring $R$ satisfies the
Generalized AuslanderReiten Conjecture if and only if so does
$R[x]$. When $R$ is a local ring we prove the same result for some
localizations of $R[x]$.
Let the measure algebra of a topological group $G$ be equipped
with
the topology of uniform convergence on bounded right uniformly
equicontinuous sets of functions.
Convolution is separately continuous on the measure algebra,
and it is jointly continuous if and only if $G$ has the SIN property.
On the larger space $\mathsf{LUC}(G)^\ast$ which includes the measure
algebra,
convolution is also jointly continuous if and only if the group
has the SIN property,
but not separately continuous for many nonSIN groups.
For a commutative ring $R$, a polynomial $f\in R[x]$ is called
separable if $R[x]/f$ is a separable $R$algebra. We derive formulae
for the number of separable polynomials when $R = \mathbb{Z}/n$, extending
a result of L. Carlitz. For instance, we show that the number
of separable polynomials in $\mathbb{Z}/n[x]$
that are separable is $\phi(n)n^d\prod_i(1p_i^{d})$
where $n = \prod p_i^{k_i}$ is the prime factorisation of $n$
and $\phi$ is Euler's totient function.
Let $g \geq 2$. A real number is said to be $g$normal if its base $g$ expansion contains every finite sequence of digits with the expected limiting frequency. Let $\phi$ denote Euler's totient function, let $\sigma$ be the sumofdivisors function, and let $\lambda$ be Carmichael's lambdafunction. We show that if $f$ is any function formed by composing $\phi$, $\sigma$, or $\lambda$, then the number
\[ 0. f(1) f(2) f(3) \dots \]
obtained by concatenating the base $g$ digits of successive $f$values is $g$normal. We also prove the same result if the inputs $1, 2, 3, \dots$ are replaced with the primes $2, 3, 5, \dots$. The proof is an adaptation of a method introduced by Copeland and Erdős in 1946 to prove the $10$normality of $0.235711131719\ldots$.
For $m, n \in \mathbb{N}$, $1\lt m \leq n$, we write $n = n_1 +
\dots + n_m$ where $\{ n_1, \dots, n_m \} \subset \mathbb{N}$. Let
$A_1, \dots, A_m$ be $n \times n$ singular real matrices such that
$\bigoplus_{i=1}^{m} \bigcap_{1\leq j \neq i \leq m} \mathcal{N}_j
= \mathbb{R}^{n},$ where
$\mathcal{N}_j = \{ x : A_j x = 0 \}$, $dim(\mathcal{N}_j)=nn_j$
and $A_1+ \dots+ A_m$ is invertible. In this paper we study integral
operators of the form
$T_{r}f(x)= \int_{\mathbb{R}^{n}} \, xA_1 y^{n_1 + \alpha_1}
\cdots xA_m y^{n_m + \alpha_m} f(y) \, dy,$
$n_1 + \dots + n_m = n$, $\frac{\alpha_1}{n_1} = \dots = \frac{\alpha_m}{n_m}=r$,
$0 \lt r \lt 1$, and the matrices $A_i$'s are as above. We obtain
the $H^{p}(\mathbb{R}^{n})L^{q}(\mathbb{R}^{n})$ boundedness
of $T_r$ for $0\lt p\lt \frac{1}{r}$ and $\frac{1}{q}=\frac{1}{p} 
r$.
For most classical and similitude groups, we show that each element
can be written as a product of two transformations that
a) preserve or almost preserve the underlying form and b) whose
squares are certain scalar maps. This generalizes work of Wonenburger
and Vinroot.
As an application, we reprove and slightly extend a well known
result of Mœglin, Vignéras and Waldspurger on the existence
of automorphisms of $p$adic classical groups that take each
irreducible smooth representation to its dual.
The FeffermanStein type inequalities
for strong maximal operator and directional maximal operator
are verified with an additional composition of the HardyLittlewood
maximal operator in the plane.
In this paper we establish a close connection between three
notions attached to a modular subgroup. Namely the set of weight
two meromorphic modular forms, the set of equivariant functions
on the upper halfplane commuting with the action of the modular
subgroup and the set of elliptic zeta functions generalizing
the Weierstrass zeta functions. In particular, we show that the
equivariant functions can be parameterized by modular objects
as well as by elliptic objects.
We calculate the dimension of cohomology groups for
the holomorphic tangent bundles of each isomorphism
class of the projective plane bundle over an elliptic curve.
As an application, we construct the families
of projective plane bundles, and prove that the families
are effectively parametrized and complete.
We determine the asymptotic behavior of the higher dimensional
Reidemeister torsion for
the graph manifolds obtained by exceptional surgeries along
twist knots.
We show that all irreducible
$\operatorname{SL}_2(\mathbb{C})$representations of the graph
manifold
are induced by irreducible metabelian representations of the
twist knot group.
We also give the set of the limits of the leading coefficients
in the higher dimensional Reidemeister torsion explicitly.
We present a multiplier theorem on anisotropic
Hardy spaces. When $m$ satisfies the anisotropic, pointwise Mihlin
condition, we obtain boundedness of the multiplier operator $T_m
: H_A^p (\mathbb R^n) \rightarrow H_A^p (\mathbb R^n)$, for the range of $p$
that depends on the eccentricities of the dilation $A$ and the
level of regularity of a multiplier symbol $m$. This extends
the classical multiplier theorem of Taibleson and Weiss.
Let $R$
be a ring and $b, c\in R$.
In this paper, we give some characterizations of the $(b,c)$inverse,
in terms of the direct sum decomposition, the annihilator and
the invertible elements.
Moreover, elements with equal $(b,c)$idempotents related to
their $(b, c)$inverses are characterized, and the reverse order
rule for the $(b,c)$inverse is considered.
In this paper, we construct two classes of rational function
operators by using the Poisson integrals of the function on the
whole real
axis. The convergence rates of the uniform and mean approximation
of such rational function operators on the whole real axis are
studied.
In this paper, we study a twocomponent LotkaVolterra competition
system
on an onedimensional spatial lattice. By the method of the comparison
principle together with
the weighted energy, we prove that the traveling wavefronts with
large speed are exponentially asymptotically stable,
when the initial perturbation around the traveling wavefronts
decays
exponentially as $j+ct \rightarrow \infty$, where $j\in\mathbb{Z}$,
$t\gt 0$, but the initial perturbation
can be arbitrarily large on other locations. This partially answers
an open problem by J.S. Guo and C.H. Wu.
In this paper, we classify all solutions of
\[
\left\{
\begin{array}{rcll}
\Delta u &=& 0 \quad &\text{ in }\mathbb{R}^{2}_{+},
\\
\dfrac{\partial u}{\partial t}&=&cx^{\beta}e^{u} \quad
&\text{ on }\partial \mathbb{R}^{2}_{+} \backslash \{0\},
\\
\end{array}
\right.
\]
with the finite conditions
\[
\int_{\partial \mathbb{R}^{2}_{+}}x^{\beta}e^{u}ds \lt C,
\qquad
\sup\limits_{\overline{\mathbb{R}^{2}_{+}}}{u(x)}\lt C.
\]
Here, $c$ is a positive number and $\beta \gt 1$.
For any ring $R$, we show that, in the bounded derived category
$D^{b}(\operatorname{Mod} R)$ of left $R$modules,
the subcategory of complexes with finite Gorenstein projective
(resp. injective) dimension modulo the subcategory
of complexes with finite projective (resp. injective) dimension
is equivalent to
the stable category $\underline{\mathbf{GP}}(\operatorname{Mod} R)$ (resp.
$\overline{\mathbf{GI}}(\operatorname{Mod} R)$)
of Gorenstein projective (resp. injective) modules. As a consequence,
we get that if $R$ is a left and right noetherian ring admitting
a dualizing complex,
then $\underline{\mathbf{GP}}(\operatorname{Mod} R)$ and
$\overline{\mathbf{GI}}(\operatorname{Mod}
R)$ are equivalent.