Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 76B03 ( Existence, uniqueness, and regularity theory [See also 35Q35] )

  Expand all        Collapse all Results 1 - 1 of 1

1. CMB 2004 (vol 47 pp. 30)

He, Xinyu
Existence of Leray's Self-Similar Solutions of the Navier-Stokes Equations In $\mathcal{D}\subset\mathbb{R}^3$
Leray's self-similar solution of the Navier-Stokes equations is defined by $$ u(x,t) = U(y)/\sqrt{2\sigma (t^*-t)}, $$ where $y = x/\sqrt{2\sigma (t^*-t)}$, $\sigma>0$. Consider the equation for $U(y)$ in a smooth bounded domain $\mathcal{D}$ of $\mathbb{R}^3$ with non-zero boundary condition: \begin{gather*} -\nu \bigtriangleup U + \sigma U +\sigma y \cdot \nabla U + U\cdot \nabla U + \nabla P = 0,\quad y \in \mathcal{D}, \\ \nabla \cdot U = 0, \quad y \in \mathcal{D}, \\ U = \mathcal{G}(y), \quad y \in \partial \mathcal{D}. \end{gather*} We prove an existence theorem for the Dirichlet problem in Sobolev space $W^{1,2} (\mathcal{D})$. This implies the local existence of a self-similar solution of the Navier-Stokes equations which blows up at $t=t^*$ with $t^* < +\infty$, provided the function $\mathcal{G}(y)$ is permissible.

Categories:76D05, 76B03

© Canadian Mathematical Society, 2017 :