1. CMB 2011 (vol 56 pp. 13)
 Alon, Gil; Kozma, Gady

Ordering the Representations of $S_n$ Using the Interchange Process
Inspired by Aldous' conjecture for
the spectral gap of the interchange process and its recent
resolution by Caputo, Liggett, and Richthammer, we define
an associated order $\prec$ on the irreducible representations of $S_n$. Aldous'
conjecture is equivalent to certain representations being comparable
in this order, and hence determining the ``Aldous order'' completely is a
generalized question. We show a few additional entries for this order.
Keywords:Aldous' conjecture, interchange process, symmetric group, representations Categories:82C22, 60B15, 43A65, 20B30, 60J27, 60K35 

2. CMB 2004 (vol 47 pp. 215)
 Jaworski, Wojciech

Countable Amenable Identity Excluding Groups
A discrete group $G$ is called \emph{identity excluding\/}
if the only irreducible
unitary representation of $G$ which weakly contains the $1$dimensional identity
representation is the $1$dimensional identity representation itself. Given a
unitary representation $\pi$ of $G$ and a probability measure $\mu$ on $G$, let
$P_\mu$ denote the $\mu$average $\int\pi(g) \mu(dg)$. The goal of this article
is twofold: (1)~to study the asymptotic behaviour of the powers $P_\mu^n$, and
(2)~to provide a characterization of countable amenable identity excluding groups.
We prove that for every adapted probability measure $\mu$ on an identity excluding
group and every unitary representation $\pi$ there exists and orthogonal projection
$E_\mu$ onto a $\pi$invariant subspace such that $s$$\lim_{n\to\infty}\bigl(P_\mu^n
\pi(a)^nE_\mu\bigr)=0$ for every $a\in\supp\mu$. This also remains true for suitably
defined identity excluding locally compact groups. We show that the class of countable
amenable identity excluding groups coincides with the class of $\FC$hypercentral
groups; in the finitely generated case this is precisely the class of groups of
polynomial growth. We also establish that every adapted random walk on a countable
amenable identity excluding group is ergodic.
Categories:22D10, 22D40, 43A05, 47A35, 60B15, 60J50 
