1. CMB 2013 (vol 57 pp. 357)
 Lauret, Emilio A.

Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds
Let $\Gamma_1$ and $\Gamma_2$ be Bieberbach groups contained in the
full isometry group $G$ of $\mathbb{R}^n$.
We prove that if the compact flat manifolds $\Gamma_1\backslash\mathbb{R}^n$ and
$\Gamma_2\backslash\mathbb{R}^n$ are strongly isospectral then the Bieberbach groups
$\Gamma_1$ and $\Gamma_2$ are representation equivalent, that is, the
right regular representations $L^2(\Gamma_1\backslash G)$ and
$L^2(\Gamma_2\backslash G)$ are unitarily equivalent.
Keywords:representation equivalent, strongly isospectrality, compact flat manifolds Categories:58J53, 22D10 

2. CMB 2010 (vol 53 pp. 684)
 Proctor, Emily; Stanhope, Elizabeth

An Isospectral Deformation on an InfranilOrbifold
We construct a Laplace isospectral deformation of metrics on an
orbifold quotient of a nilmanifold. Each orbifold in the deformation
contains singular points with order two isotropy. Isospectrality is
obtained by modifying a generalization of Sunada's theorem due to
DeTurck and Gordon.
Keywords:spectral geometry, global Riemannian geometry, orbifold, nilmanifold Categories:58J53, 53C20 

3. CMB 2009 (vol 52 pp. 66)
 Dryden, Emily B.; Strohmaier, Alexander

Huber's Theorem for Hyperbolic Orbisurfaces
We show that for compact orientable hyperbolic orbisurfaces, the
Laplace spectrum determines the length spectrum as well as the
number of singular points of a given order. The converse also holds, giving
a full generalization of Huber's theorem to the setting of
compact orientable hyperbolic orbisurfaces.
Keywords:Huber's theorem, length spectrum, isospectral, orbisurfaces Categories:58J53, 11F72 

4. CMB 2006 (vol 49 pp. 226)
 Engman, Martin

The Spectrum and Isometric Embeddings of Surfaces of Revolution
A sharp upper bound on the first $S^{1}$ invariant eigenvalue of the Laplacian
for $S^1$ invariant metrics on $S^2$ is used to find obstructions to the existence
of $S^1$ equivariant isometric embeddings of such metrics in $(\R^3,\can)$. As a
corollary we prove: If the first four distinct eigenvalues have even multiplicities
then the metric cannot be equivariantly, isometrically embedded in $(\R^3,\can)$. This
leads to generalizations of some classical results in the theory of surfaces.
Categories:58J50, 58J53, 53C20, 35P15 
