
Involutions Fixing $F^n \cup \{\text{Indecomposable}\}$
Let $M^m$ be an $m$dimensional, closed and smooth manifold, equipped with a smooth involution $T\colon M^m \to M^m$ whose fixed point set has the form $F^n \cup F^j$, where $F^n$ and $F^j$ are submanifolds with dimensions $n$ and $j$, $F^j$ is indecomposable and $ n >j$. Write $nj=2^pq$, where $q \ge 1$ is odd and $p \geq 0$, and set $m(nj) = 2n+pq+1$ if $p \leq q + 1$
and $m(nj)= 2n + 2^{pq}$ if $p \geq q$. In this paper we show that $m \le m(nj) + 2j+1$. Further, we show that this bound is \emph{almost} best possible, by exhibiting examples $(M^{m(nj) +2j},T)$ where the fixed point set of
$T$ has the form $F^n \cup F^j$ described above, for every $2 \le j
Keywords:involution, projective space bundle, indecomposable manifold, splitting principle, StiefelWhitney class, characteristic number Category:57R85 