1. CMB Online first
 Tran, Anh T.; Yamaguchi, Yoshikazu

The asymptotics of the higher dimensional Reidemeister torsion for exceptional surgeries along twist knots
We determine the asymptotic behavior of the higher dimensional
Reidemeister torsion for
the graph manifolds obtained by exceptional surgeries along
twist knots.
We show that all irreducible
$\operatorname{SL}_2(\mathbb{C})$representations of the graph
manifold
are induced by irreducible metabelian representations of the
twist knot group.
We also give the set of the limits of the leading coefficients
in the higher dimensional Reidemeister torsion explicitly.
Keywords:Reidemeister torsion, graph manifold, asymptotic behavior, exceptional surgery Categories:57M27, 57M50 

2. CMB 2010 (vol 53 pp. 706)
3. CMB 2006 (vol 49 pp. 36)
4. CMB 2004 (vol 47 pp. 332)
 Charette, Virginie; Goldman, William M.; Jones, Catherine A.

Recurrent Geodesics in Flat Lorentz $3$Manifolds
Let $M$ be a complete flat Lorentz $3$manifold $M$ with purely
hyperbolic holonomy $\Gamma$. Recurrent geodesic rays are completely
classified when $\Gamma$ is cyclic. This implies that for any pair of
periodic geodesics $\gamma_1$, $\gamma_2$, a unique geodesic forward
spirals towards $\gamma_1$ and backward spirals towards $\gamma_2$.
Keywords:geometric structures on lowdimensional manifolds, notions of recurrence Categories:57M50, 37B20 

5. CMB 2003 (vol 46 pp. 265)
 Oh, Seungsang

Reducing Spheres and Klein Bottles after Dehn Fillings
Let $M$ be a compact, connected, orientable, irreducible 3manifold with a
torus boundary. It is known that if two Dehn fillings on $M$ along the
boundary produce a reducible manifold and a manifold containing a Klein
bottle, then the distance between the filling slopes is at most three. This
paper gives a remarkably short proof of this result.
Keywords:Dehn filling, reducible, Klein bottle Category:57M50 

6. CMB 1997 (vol 40 pp. 204)