26. CMB 2004 (vol 47 pp. 119)
 Theriault, Stephen D.

$2$Primary Exponent Bounds for Lie Groups of Low Rank
Exponent information is proven about the Lie groups $SU(3)$,
$SU(4)$, $Sp(2)$, and $G_2$ by showing some power of the $H$space
squaring map (on a suitably looped connectedcover) is null homotopic.
The upper bounds obtained are $8$, $32$, $64$, and $2^8$ respectively.
This null homotopy is best possible for $SU(3)$ given the number of
loops, off by at most one power of~$2$ for $SU(4)$ and $Sp(2)$, and
off by at most two powers of $2$ for $G_2$.
Keywords:Lie group, exponent Category:55Q52 

27. CMB 2001 (vol 44 pp. 459)
 Kahl, Thomas

LScatÃ©gorie algÃ©brique et attachement de cellules
Nous montrons que la Acat\'egorie d'un espace simplement connexe de
type fini est inf\'erieure ou \'egale \`a $n$ si et seulement si son
mod\`ele d'AdamsHilton est un r\'etracte homotopique d'une alg\`ebre
diff\'erentielle \`a $n$ \'etages. Nous en d\'eduisons que
l'invariant $\Acat$ augmente au plus de 1 lors de l'attachement
d'une cellule \`a un espace.
We show that the Acategory of a simply connected space of finite type
is less than or equal to $n$ if and only if its AdamsHilton model is
a homotopy retract of an $n$stage differential algebra. We deduce
from this that the invariant $\Acat$ increases by at most 1 when a
cell is attached to a space.
Keywords:LScategory, strong category, AdamsHilton models, cell attachments Categories:55M30, 18G55 

28. CMB 2001 (vol 44 pp. 266)
 Cencelj, M.; Dranishnikov, A. N.

Extension of Maps to Nilpotent Spaces
We show that every compactum has cohomological dimension $1$ with respect
to a finitely generated nilpotent group $G$ whenever it has cohomological
dimension $1$ with respect to the abelianization of $G$. This is applied
to the extension theory to obtain a cohomological dimension theory condition
for a finitedimensional compactum $X$ for extendability of every map from
a closed subset of $X$ into a nilpotent $\CW$complex $M$ with finitely
generated homotopy groups over all of $X$.
Keywords:cohomological dimension, extension of maps, nilpotent group, nilpotent space Categories:55M10, 55S36, 54C20, 54F45 

29. CMB 2001 (vol 44 pp. 80)
30. CMB 2000 (vol 43 pp. 343)
31. CMB 2000 (vol 43 pp. 226)
32. CMB 2000 (vol 43 pp. 37)
33. CMB 1999 (vol 42 pp. 129)
 Baker, Andrew

Hecke Operations and the Adams $E_2$Term Based on Elliptic Cohomology
Hecke operators are used to investigate part of the $\E_2$term of
the Adams spectral sequence based on elliptic homology. The main
result is a derivation of $\Ext^1$ which combines use of classical
Hecke operators and $p$adic Hecke operators due to Serre.
Keywords:Adams spectral sequence, elliptic cohomology, Hecke operators Categories:55N20, 55N22, 55T15, 11F11, 11F25 

34. CMB 1999 (vol 42 pp. 248)
 Weber, Christian

The Classification of $\Pin_4$Bundles over a $4$Complex
In this paper we show that the Liegroup $\Pin_4$ is isomorphic to
the semidirect product $(\SU_2\times \SU_2)\timesv \Z/2$ where
$\Z/2$ operates by flipping the factors. Using this structure
theorem we prove a classification theorem for $\Pin_4$bundles over
a finite $4$complex $X$.
Categories:55N25, 55R10, 57S15 

35. CMB 1999 (vol 42 pp. 52)
 Edmonds, Allan L.

Embedding Coverings in Bundles
If $V\to X$ is a vector bundle of fiber dimension $k$ and $Y\to X$
is a finite sheeted covering map of degree $d$, the implications
for the Euler class $e(V)$ in $H^k(X)$ of $V$ implied by the
existence of an embedding $Y\to V$ lifting the covering map are
explored. In particular it is proved that $dd'e(V)=0$ where $d'$
is a certain divisor of $d1$, and often $d'=1$.
Categories:57M10, 55R25, 55S40, 57N35 

36. CMB 1998 (vol 41 pp. 20)
37. CMB 1998 (vol 41 pp. 28)
38. CMB 1997 (vol 40 pp. 341)
 Lee, HyangSook

The stable and unstable types of classifying spaces
The main purpose of this paper is to study groups $G_1$, $G_2$ such that
$H^\ast(BG_1,{\bf Z}/p)$ is isomorphic to $H^\ast(BG_2,{\bf Z}/p)$
in ${\cal U}$, the category of unstable modules over the Steenrod algebra
${\cal A}$, but not isomorphic as graded algebras over ${\bf Z}/p$.
Categories:55R35, 20J06 

39. CMB 1997 (vol 40 pp. 193)
40. CMB 1997 (vol 40 pp. 108)
 Schaer, J.

Continuous Selfmaps of the Circle
Given a continuous map $\delta$ from the circle $S$ to itself we
want to find all selfmaps $\sigma\colon S\to S$ for which
$\delta\circ\sigma = \delta$. If the degree $r$ of $\delta$ is not
zero, the transformations $\sigma$ form a subgroup of the cyclic
group $C_r$. If $r=0$, all such invertible transformations form a
group isomorphic either to a cyclic group $C_n$ or to a dihedral
group $D_n$ depending on whether all such transformations are
orientation preserving or not. Applied to the tangent image of
planar closed curves, this generalizes a result of Bisztriczky and
Rival [1]. The proof rests on the theorem: {\it Let
$\Delta\colon\bbd R\to\bbd R$ be continuous, nowhere constant, and
$\lim_{x\to \infty}\Delta(x)=\infty$, $ \lim_{x\to+\infty}\Delta
(x)=+\infty$; then the only continuous map $\Sigma\colon\bbd R\to\bbd
R$ such that $\Delta\circ\Sigma=\Delta$ is the identity
$\Sigma=\id_{\bbd R}$.
Categories:53A04, 55M25, 55M35 
