1. CMB 2012 (vol 57 pp. 61)
 Geschke, Stefan

2dimensional Convexity Numbers and $P_4$free Graphs
For $S\subseteq\mathbb R^n$ a set
$C\subseteq S$ is an $m$clique if the convex hull of no $m$element subset of
$C$ is contained in $S$.
We show that there is essentially just one way to construct
a closed set $S\subseteq\mathbb R^2$ without an uncountable
$3$clique that is not the union of countably many convex sets.
In particular, all such sets have the same convexity number;
that is, they
require the same number of convex subsets to cover them.
The main result follows from an analysis of the convex structure of closed
sets in $\mathbb R^2$ without uncountable 3cliques in terms of
clopen, $P_4$free graphs on Polish spaces.
Keywords:convex cover, convexity number, continuous coloring, perfect graph, cograph Categories:52A10, 03E17, 03E75 

2. CMB 2011 (vol 55 pp. 767)
 Martini, Horst; Wu, Senlin

On Zindler Curves in Normed Planes
We extend the notion of Zindler curve from the Euclidean plane to
normed planes. A characterization of Zindler curves for general
normed planes is given, and the relation between Zindler curves and
curves of constant areahalving distances in such planes is
discussed.
Keywords:rc length, areahalving distance, Birkhoff orthogonality, convex curve, halving pair, halving distance, isosceles orthogonality, midpoint curve, Minkowski plane, normed plane, Zindler curve Categories:52A21, 52A10, 46C15 

3. CMB 2005 (vol 48 pp. 523)
 DÃ¼velmeyer, Nico

Angle Measures and Bisectors in Minkowski Planes
\begin{abstract}
We prove that a Minkowski plane is Euclidean if and only if Busemann's or
Glogovskij's definitions
of angular bisectors coincide
with a bisector defined by an angular measure in the sense of Brass.
In addition, bisectors defined by the area measure coincide with bisectors
defined by the circumference (arc length) measure
if and only if the unit circle is an
equiframed curve.
Keywords:Radon curves, Minkowski geometry, Minkowski planes,, angular bisector, angular measure, equiframed curves Categories:52A10, 52A21 

4. CMB 2003 (vol 46 pp. 373)
 Laugesen, Richard S.; Pritsker, Igor E.

Potential Theory of the FarthestPoint Distance Function
We study the farthestpoint distance function, which measures the
distance from $z \in \mathbb{C}$ to the farthest point or points of
a given compact set $E$ in the plane.
The logarithm of this distance is subharmonic as a function of $z$,
and equals the logarithmic potential of a unique probability measure
with unbounded support. This measure $\sigma_E$ has many interesting
properties that reflect the topology and geometry of the compact set
$E$. We prove $\sigma_E(E) \leq \frac12$ for polygons inscribed in a
circle, with equality if and only if $E$ is a regular $n$gon for some
odd $n$. Also we show $\sigma_E(E) = \frac12$ for smooth convex sets of
constant width. We conjecture $\sigma_E(E) \leq \frac12$ for all~$E$.
Keywords:distance function, farthest points, subharmonic function, representing measure, convex bodies of constant width Categories:31A05, 52A10, 52A40 
