Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 47A10 ( Spectrum, resolvent )

  Expand all        Collapse all Results 1 - 5 of 5

1. CMB Online first

Bu, Shangquan; Cai, Gang
Hölder continuous solutions of degenerate differential equations with finite delay
Using known operator-valued Fourier multiplier results on vector-valued Hölder continuous function spaces $C^\alpha (\mathbb R; X)$, we completely characterize the $C^\alpha$-well-posedness of the first order degenerate differential equations with finite delay $(Mu)'(t) = Au(t) + Fu_t + f(t)$ for $t\in\mathbb R$ by the boundedness of the $(M, F)$-resolvent of $A$ under suitable assumption on the delay operator $F$, where $A, M$ are closed linear operators on a Banach space $X$ satisfying $D(A)\cap D(M) \not=\{0\}$, the delay operator $F$ is a bounded linear operator from $C([-r, 0]; X)$ to $X$ and $r \gt 0$ is fixed.

Keywords:well-posedness, degenerate differential equation, $\dot{C}^\alpha$-multiplier, Hölder continuous function space
Categories:34N05, 34G10, 47D06, 47A10, 34K30

2. CMB 2012 (vol 57 pp. 145)

Mustafayev, H. S.
The Essential Spectrum of the Essentially Isometric Operator
Let $T$ be a contraction on a complex, separable, infinite dimensional Hilbert space and let $\sigma \left( T\right) $ (resp. $\sigma _{e}\left( T\right) )$ be its spectrum (resp. essential spectrum). We assume that $T$ is an essentially isometric operator, that is $I_{H}-T^{\ast }T$ is compact. We show that if $D\diagdown \sigma \left( T\right) \neq \emptyset ,$ then for every $f$ from the disc-algebra, \begin{equation*} \sigma _{e}\left( f\left( T\right) \right) =f\left( \sigma _{e}\left( T\right) \right) , \end{equation*} where $D$ is the open unit disc. In addition, if $T$ lies in the class $ C_{0\cdot }\cup C_{\cdot 0},$ then \begin{equation*} \sigma _{e}\left( f\left( T\right) \right) =f\left( \sigma \left( T\right) \cap \Gamma \right) , \end{equation*} where $\Gamma $ is the unit circle. Some related problems are also discussed.

Keywords:Hilbert space, contraction, essentially isometric operator, (essential) spectrum, functional calculus
Categories:47A10, 47A53, 47A60, 47B07

3. CMB 2010 (vol 54 pp. 141)

Kim, Sang Og; Park, Choonkil
Linear Maps on $C^*$-Algebras Preserving the Set of Operators that are Invertible in $\mathcal{A}/\mathcal{I}$
For $C^*$-algebras $\mathcal{A}$ of real rank zero, we describe linear maps $\phi$ on $\mathcal{A}$ that are surjective up to ideals $\mathcal{I}$, and $\pi(A)$ is invertible in $\mathcal{A}/\mathcal{I}$ if and only if $\pi(\phi(A))$ is invertible in $\mathcal{A}/\mathcal{I}$, where $A\in\mathcal{A}$ and $\pi:\mathcal{A}\to\mathcal{A}/\mathcal{I}$ is the quotient map. We also consider similar linear maps preserving zero products on the Calkin algebra.

Keywords:preservers, Jordan automorphisms, invertible operators, zero products
Categories:47B48, 47A10, 46H10

4. CMB 1999 (vol 42 pp. 452)

Bradley, Sean
Finite Rank Operators in Certain Algebras
Let $\Alg(\l)$ be the algebra of all bounded linear operators on a normed linear space $\x$ leaving invariant each member of the complete lattice of closed subspaces $\l$. We discuss when the subalgebra of finite rank operators in $\Alg(\l)$ is non-zero, and give an example which shows this subalgebra may be zero even for finite lattices. We then give a necessary and sufficient lattice condition for decomposing a finite rank operator $F$ into a sum of a rank one operator and an operator whose range is smaller than that of $F$, each of which lies in $\Alg(\l)$. This unifies results of Erdos, Longstaff, Lambrou, and Spanoudakis. Finally, we use the existence of finite rank operators in certain algebras to characterize the spectra of Riesz operators (generalizing results of Ringrose and Clauss) and compute the Jacobson radical for closed algebras of Riesz operators and $\Alg(\l)$ for various types of lattices.

Categories:47D30, 47A15, 47A10

5. CMB 1999 (vol 42 pp. 104)

Nikolskaia, Ludmila
Instabilité de vecteurs propres d'opérateurs linéaires
We consider some geometric properties of eigenvectors of linear operators on infinite dimensional Hilbert space. It is proved that the property of a family of vectors $(x_n)$ to be eigenvectors $Tx_n= \lambda_n x_n$ ($\lambda_n \noteq \lambda_k$ for $n\noteq k$) of a bounded operator $T$ (admissibility property) is very instable with respect to additive and linear perturbations. For instance, (1)~for the sequence $(x_n+\epsilon_n v_n)_{n\geq k(\epsilon)}$ to be admissible for every admissible $(x_n)$ and for a suitable choice of small numbers $\epsilon_n\noteq 0$ it is necessary and sufficient that the perturbation sequence be eventually scalar: there exist $\gamma_n\in \C$ such that $v_n= \gamma_n v_{k}$ for $n\geq k$ (Theorem~2); (2)~for a bounded operator $A$ to transform admissible families $(x_n)$ into admissible families $(Ax_n)$ it is necessary and sufficient that $A$ be left invertible (Theorem~4).

Keywords:eigenvectors, minimal families, reproducing kernels
Categories:47A10, 46B15

© Canadian Mathematical Society, 2017 :