location:  Publications → journals
Search results

Search: MSC category 47 ( Operator theory )

 Expand all        Collapse all Results 51 - 75 of 117

51. CMB 2011 (vol 54 pp. 506)

 On the Canonical Solution of the Sturm-Liouville Problem with Singularity and Turning Point of Even Order In this paper, we are going to investigate the canonical property of solutions of systems of differential equations having a singularity and turning point of even order. First, by a replacement, we transform the system to the Sturm-Liouville equation with turning point. Using of the asymptotic estimates provided by Eberhard, Freiling, and Schneider for a special fundamental system of solutions of the Sturm-Liouville equation, we study the infinite product representation of solutions of the systems. Then we transform the Sturm-Liouville equation with turning point to the equation with singularity, then we study the asymptotic behavior of its solutions. Such representations are relevant to the inverse spectral problem. Keywords:turning point, singularity, Sturm-Liouville, infinite products, Hadamard's theorem, eigenvaluesCategories:34B05, 34Lxx, 47E05

52. CMB 2011 (vol 55 pp. 339)

Loring, Terry A.
 From Matrix to Operator Inequalities We generalize LÃ¶wner's method for proving that matrix monotone functions are operator monotone. The relation $x\leq y$ on bounded operators is our model for a definition of $C^{*}$-relations being residually finite dimensional. Our main result is a meta-theorem about theorems involving relations on bounded operators. If we can show there are residually finite dimensional relations involved and verify a technical condition, then such a theorem will follow from its restriction to matrices. Applications are shown regarding norms of exponentials, the norms of commutators, and "positive" noncommutative $*$-polynomials. Keywords:$C*$-algebras, matrices, bounded operators, relations, operator norm, order, commutator, exponential, residually finite dimensionalCategories:46L05, 47B99

53. CMB 2011 (vol 55 pp. 441)

Zorboska, Nina
 Univalently Induced, Closed Range, Composition Operators on the Bloch-type Spaces While there is a large variety of univalently induced closed range composition operators on the Bloch space, we show that the only univalently induced, closed range, composition operators on the Bloch-type spaces $B^{\alpha}$ with $\alpha \ne 1$ are the ones induced by a disc automorphism. Keywords:composition operators, Bloch-type spaces, closed range, univalentCategories:47B35, 32A18

54. CMB 2011 (vol 54 pp. 498)

 On the Adjoint and the Closure of the Sum of Two Unbounded Operators We prove, under some conditions on the domains, that the adjoint of the sum of two unbounded operators is the sum of their adjoints in both Hilbert and Banach space settings. A similar result about the closure of operators is also proved. Some interesting consequences and examples "spice up" the paper. Keywords:unbounded operators, sum and products of operators, Hilbert and Banach adjoints, self-adjoint operators, closed operators, closure of operatorsCategory:47A05

55. CMB 2011 (vol 54 pp. 411)

Davidson, Kenneth R.; Wright, Alex
 Operator Algebras with Unique Preduals We show that every free semigroup algebra has a (strongly) unique Banach space predual. We also provide a new simpler proof that a weak-$*$ closed unital operator algebra containing a weak-$*$ dense subalgebra of compact operators has a unique Banach space predual. Keywords:unique predual, free semigroup algebra, CSL algebraCategories:47L50, 46B04, 47L35

56. CMB 2011 (vol 54 pp. 255)

Dehaye, Paul-Olivier
 On an Identity due to Bump and Diaconis, and Tracy and Widom A classical question for a Toeplitz matrix with given symbol is how to compute asymptotics for the determinants of its reductions to finite rank. One can also consider how those asymptotics are affected when shifting an initial set of rows and columns (or, equivalently, asymptotics of their minors). Bump and Diaconis obtained a formula for such shifts involving Laguerre polynomials and sums over symmetric groups. They also showed how the Heine identity extends for such minors, which makes this question relevant to Random Matrix Theory. Independently, Tracy and Widom used the Wiener-Hopf factorization to express those shifts in terms of products of infinite matrices. We show directly why those two expressions are equal and uncover some structure in both formulas that was unknown to their authors. We introduce a mysterious differential operator on symmetric functions that is very similar to vertex operators. We show that the Bump-Diaconis-Tracy-Widom identity is a differentiated version of the classical Jacobi-Trudi identity. Keywords:Toeplitz matrices, Jacobi-Trudi identity, SzegÅ limit theorem, Heine identity, Wiener-Hopf factorizationCategories:47B35, 05E05, 20G05

57. CMB 2010 (vol 54 pp. 527)

Preda, Ciprian; Sipos, Ciprian
 On the Dichotomy of the Evolution Families: A Discrete-Argument Approach We establish a discrete-time criteria guaranteeing the existence of an exponential dichotomy in the continuous-time behavior of an abstract evolution family. We prove that an evolution family ${\cal U}=\{U(t,s)\}_{t \geq s\geq 0}$ acting on a Banach space $X$ is uniformly exponentially dichotomic (with respect to its continuous-time behavior) if and only if the corresponding difference equation with the inhomogeneous term from a vector-valued Orlicz sequence space $l^\Phi(\mathbb{N}, X)$ admits a solution in the same $l^\Phi(\mathbb{N},X)$. The technique of proof effectively eliminates the continuity hypothesis on the evolution family (\emph{i.e.,} we do not assume that $U(\,\cdot\,,s)x$ or $U(t,\,\cdot\,)x$ is continuous on $[s,\infty)$, and respectively $[0,t]$). Thus, some known results given by Coffman and Schaffer, Perron, and Ta Li are extended. Keywords:evolution families, exponential dichotomy, Orlicz sequence spaces, admissibilityCategories:34D05, 47D06, 93D20

58. CMB 2010 (vol 54 pp. 364)

Preda, Ciprian; Preda, Petre
 Lyapunov Theorems for the Asymptotic Behavior of Evolution Families on the Half-Line Two theorems regarding the asymptotic behavior of evolution families are established in terms of the solutions of a certain Lyapunov operator equation. Keywords:evolution families, exponential instability, Lyapunov equationCategories:34D05, 47D06

59. CMB 2010 (vol 54 pp. 21)

 Generalized D-symmetric Operators II Let $H$ be a separable, infinite-dimensional, complex Hilbert space and let $A, B\in{\mathcal L }(H)$, where ${\mathcal L}(H)$ is the algebra of all bounded linear operators on $H$. Let $\delta_{AB}\colon {\mathcal L}(H)\rightarrow {\mathcal L}(H)$ denote the generalized derivation $\delta_{AB}(X)=AX-XB$. This note will initiate a study on the class of pairs $(A,B)$ such that $\overline{{\mathcal R}(\delta_{AB})}= \overline{{\mathcal R}(\delta_{A^{\ast}B^{\ast}})}$. Keywords:generalized derivation, adjoint, D-symmetric operator, normal operatorCategories:47B47, 47B10, 47A30

60. CMB 2010 (vol 54 pp. 28)

Chang, Yu-Hsien; Hong, Cheng-Hong
 Generalized Solution of the Photon Transport Problem The purpose of this paper is to show the existence of a generalized solution of the photon transport problem. By means of the theory of equicontinuous $C_{0}$-semigroup on a sequentially complete locally convex topological vector space we show that the perturbed abstract Cauchy problem has a unique solution when the perturbation operator and the forcing term function satisfy certain conditions. A consequence of the abstract result is that it can be directly applied to obtain a generalized solution of the photon transport problem. Keywords:photon transport, $C_{0}$-semigroupCategories:35K30, 47D03

61. CMB 2010 (vol 54 pp. 141)

Kim, Sang Og; Park, Choonkil
 Linear Maps on $C^*$-Algebras Preserving the Set of Operators that are Invertible in $\mathcal{A}/\mathcal{I}$ For $C^*$-algebras $\mathcal{A}$ of real rank zero, we describe linear maps $\phi$ on $\mathcal{A}$ that are surjective up to ideals $\mathcal{I}$, and $\pi(A)$ is invertible in $\mathcal{A}/\mathcal{I}$ if and only if $\pi(\phi(A))$ is invertible in $\mathcal{A}/\mathcal{I}$, where $A\in\mathcal{A}$ and $\pi:\mathcal{A}\to\mathcal{A}/\mathcal{I}$ is the quotient map. We also consider similar linear maps preserving zero products on the Calkin algebra. Keywords:preservers, Jordan automorphisms, invertible operators, zero productsCategories:47B48, 47A10, 46H10

62. CMB 2010 (vol 54 pp. 3)

Bakonyi, M.; Timotin, D.
 Extensions of Positive Definite Functions on Amenable Groups Let $S$ be a subset of an amenable group $G$ such that $e\in S$ and $S^{-1}=S$. The main result of this paper states that if the Cayley graph of $G$ with respect to $S$ has a certain combinatorial property, then every positive definite operator-valued function on $S$ can be extended to a positive definite function on $G$. Several known extension results are obtained as corollaries. New applications are also presented. Categories:43A35, 47A57, 20E05

63. CMB 2010 (vol 53 pp. 550)

Shalit, Orr Moshe
 Representing a Product System Representation as a Contractive Semigroup and Applications to Regular Isometric Dilations In this paper we propose a new technical tool for analyzing representations of Hilbert $C^*$-product systems. Using this tool, we give a new proof that every doubly commuting representation over $\mathbb{N}^k$ has a regular isometric dilation, and we also prove sufficient conditions for the existence of a regular isometric dilation of representations over more general subsemigroups of $\mathbb R_{+}^k$. Categories:47A20, 46L08

64. CMB 2010 (vol 53 pp. 398)

Botelho, Fernanda; Jamison, James
 Projections in the Convex Hull of Surjective Isometries We characterize those linear projections represented as a convex combination of two surjective isometries on standard Banach spaces of continuous functions with values in a strictly convex Banach space. Keywords:isometry, convex combination of isometries, generalized bi-circular projectionsCategories:47A65, 47B15, 47B37

65. CMB 2010 (vol 53 pp. 466)

Dubarbie, Luis
 Separating Maps between Spaces of Vector-Valued Absolutely Continuous Functions In this paper we give a description of separating or disjointness preserving linear bijections on spaces of vector-valued absolutely continuous functions defined on compact subsets of the real line. We obtain that they are continuous and biseparating in the finite-dimensional case. The infinite-dimensional case is also studied. Keywords:separating maps, disjointness preserving, vector-valued absolutely continuous functions, automatic continuityCategories:47B38, 46E15, 46E40, 46H40, 47B33

66. CMB 2009 (vol 40 pp. 443)

 Reflective Representations and Banach C*-Modules Suppose ${\cal A}$ is a unital $C$*-algebra and $m\colon{\cal A}\to B(X)$ Categories:47D30, 46L99

67. CMB 2009 (vol 40 pp. 464)

Kuo, Chung-Cheng
 On the solvability of a Neumann boundary value problem at resonance We study the existence of solutions of the semilinear equations (1) $\triangle u + g(x,u)=h$, ${\partial u \over \partial n} = 0$ on $\partial \Omega$ in which the non-linearity $g$ may grow superlinearly in $u$ in one of directions $u \to \infty$ and $u \to -\infty$, and (2) $-\triangle u + g(x,u)=h$, ${\partial u \over \partial n} = 0$ on $\partial \Omega$ in which the nonlinear term $g$ may grow superlinearly in $u$ as $|u| \to \infty$. The purpose of this paper is to obtain solvability theorems for (1) and (2) when the Landesman-Lazer condition does not hold. More precisely, we require that $h$ may satisfy $\int g^\delta_- (x) \, dx < \int h(x) \, dx = 0< \int g^\gamma_+ (x)\,dx$, where $\gamma, \delta$ are arbitrarily nonnegative constants, $g^\gamma_+ (x) = \lim_{u \to \infty} \inf g(x,u) |u|^\gamma$ and $g^\delta_- (x)=\lim_{u \to -\infty} \sup g(x,u)|u|^\delta$. The proofs are based upon degree theoretic arguments. Keywords:Landesman-Lazer condition, Leray Schauder degreeCategories:35J65, 47H11, 47H15

68. CMB 2009 (vol 40 pp. 193)

Kucerovsky, Dan
 Finite rank operators and functional calculus on Hilbert modules over abelian $C^{\ast}$-algebras We consider the problem: If $K$ is a compact normal operator on a Hilbert module $E$, and $f\in C_0(\Sp K)$ is a function which is zero in a neighbourhood of the origin, is $f(K)$ of finite rank? We show that this is the case if the underlying $C^{\ast}$-algebra is abelian, and that the range of $f(K)$ is contained in a finitely generated projective submodule of $E$. Categories:55R50, 47A60, 47B38

69. CMB 2008 (vol 51 pp. 481)

Bayart, Frédéric
 Universal Inner Functions on the Ball It is shown that given any sequence of automorphisms $(\phi_k)_k$ of the unit ball $\bn$ of $\cn$ such that $\|\phi_k(0)\|$ tends to $1$, there exists an inner function $I$ such that the family of non-Euclidean translates" $(I\circ\phi_k)_k$ is locally uniformly dense in the unit ball of $H^\infty(\bn)$. Keywords:inner functions, automorphisms of the ball, universalityCategories:32A35, 30D50, 47B38

70. CMB 2008 (vol 51 pp. 604)

{\'S}liwa, Wies{\l}aw
 The Invariant Subspace Problem for Non-Archimedean Banach Spaces It is proved that every infinite-dimensional non-archimedean Banach space of countable type admits a linear continuous operator without a non-trivial closed invariant subspace. This solves a problem stated by A.~C.~M. van Rooij and W.~H. Schikhof in 1992. Keywords:invariant subspaces, non-archimedean Banach spacesCategories:47S10, 46S10, 47A15

71. CMB 2008 (vol 51 pp. 378)

Izuchi, Kou Hei
 Cyclic Vectors in Some Weighted $L^p$ Spaces of Entire Functions In this paper, we generalize a result recently obtained by the author. We characterize the cyclic vectors in $\Lp$. Let $f\in\Lp$ and $f\poly$ be contained in the space. We show that $f$ is non-vanishing if and only if $f$ is cyclic. Keywords:weighted $L^p$ spaces of entire functions, cyclic vectorsCategories:47A16, 46J15, 46H25

72. CMB 2008 (vol 51 pp. 372)

Ezquerro, J. A.; Hernández, M. A.
 Picard's Iterations for Integral Equations of Mixed Hammerstein Type A new semilocal convergence result for the Picard method is presented, where the main required condition in the contraction mapping principle is relaxed. Keywords:nonlinear equations in Banach spaces, successive approximations, semilocal convergence theorem, Picard's iteration, Hammerstein integral equationsCategories:45G10, 47H99, 65J15

73. CMB 2008 (vol 51 pp. 67)

Kalton, Nigel; Sukochev, Fyodor
 Rearrangement-Invariant Functionals with Applications to Traces on Symmetrically Normed Ideals We present a construction of singular rearrangement invariant functionals on Marcinkiewicz function/operator spaces. The functionals constructed differ from all previous examples in the literature in that they fail to be symmetric. In other words, the functional $\phi$ fails the condition that if $x\pprec y$ (Hardy-Littlewood-Polya submajorization) and $0\leq x,y$, then $0\le \phi(x)\le \phi(y).$ We apply our results to singular traces on symmetric operator spaces (in particular on symmetrically-normed ideals of compact operators), answering questions raised by Guido and Isola. Categories:46L52, 47B10, 46E30

74. CMB 2007 (vol 50 pp. 172)

Aron, Richard; Gorkin, Pamela
 An Infinite Dimensional Vector Space of Universal Functions for $H^\infty$ of the Ball We show that there exists a closed infinite dimensional subspace of $H^\infty(B^n)$ such that every function of norm one is universal for some sequence of automorphisms of $B^n$. Categories:47B38, 47B33, 46J10

75. CMB 2007 (vol 50 pp. 85)

Han, Deguang
 Classification of Finite Group-Frames and Super-Frames Given a finite group $G$, we examine the classification of all frame representations of $G$ and the classification of all $G$-frames, \emph{i.e.,} frames induced by group representations of $G$. We show that the exact number of equivalence classes of $G$-frames and the exact number of frame representations can be explicitly calculated. We also discuss how to calculate the largest number $L$ such that there exists an $L$-tuple of strongly disjoint $G$-frames. Keywords:frames, group-frames, frame representations, disjoint framesCategories:42C15, 46C05, 47B10
 Page Previous 1 2 3 4 5 Next
 top of page | contact us | privacy | site map |