Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 47 ( Operator theory )

  Expand all        Collapse all Results 51 - 75 of 111

51. CMB 2010 (vol 54 pp. 527)

Preda, Ciprian; Sipos, Ciprian
On the Dichotomy of the Evolution Families: A Discrete-Argument Approach
We establish a discrete-time criteria guaranteeing the existence of an exponential dichotomy in the continuous-time behavior of an abstract evolution family. We prove that an evolution family ${\cal U}=\{U(t,s)\}_{t \geq s\geq 0}$ acting on a Banach space $X$ is uniformly exponentially dichotomic (with respect to its continuous-time behavior) if and only if the corresponding difference equation with the inhomogeneous term from a vector-valued Orlicz sequence space $l^\Phi(\mathbb{N}, X)$ admits a solution in the same $l^\Phi(\mathbb{N},X)$. The technique of proof effectively eliminates the continuity hypothesis on the evolution family (\emph{i.e.,} we do not assume that $U(\,\cdot\,,s)x$ or $U(t,\,\cdot\,)x$ is continuous on $[s,\infty)$, and respectively $[0,t]$). Thus, some known results given by Coffman and Schaffer, Perron, and Ta Li are extended.

Keywords:evolution families, exponential dichotomy, Orlicz sequence spaces, admissibility
Categories:34D05, 47D06, 93D20

52. CMB 2010 (vol 54 pp. 364)

Preda, Ciprian; Preda, Petre
Lyapunov Theorems for the Asymptotic Behavior of Evolution Families on the Half-Line
Two theorems regarding the asymptotic behavior of evolution families are established in terms of the solutions of a certain Lyapunov operator equation.

Keywords:evolution families, exponential instability, Lyapunov equation
Categories:34D05, 47D06

53. CMB 2010 (vol 54 pp. 21)

Bouali, S.; Ech-chad, M.
Generalized D-symmetric Operators II
Let $H$ be a separable, infinite-dimensional, complex Hilbert space and let $A, B\in{\mathcal L }(H)$, where ${\mathcal L}(H)$ is the algebra of all bounded linear operators on $H$. Let $\delta_{AB}\colon {\mathcal L}(H)\rightarrow {\mathcal L}(H)$ denote the generalized derivation $\delta_{AB}(X)=AX-XB$. This note will initiate a study on the class of pairs $(A,B)$ such that $\overline{{\mathcal R}(\delta_{AB})}= \overline{{\mathcal R}(\delta_{A^{\ast}B^{\ast}})}$.

Keywords:generalized derivation, adjoint, D-symmetric operator, normal operator
Categories:47B47, 47B10, 47A30

54. CMB 2010 (vol 54 pp. 28)

Chang, Yu-Hsien; Hong, Cheng-Hong
Generalized Solution of the Photon Transport Problem
The purpose of this paper is to show the existence of a generalized solution of the photon transport problem. By means of the theory of equicontinuous $C_{0}$-semigroup on a sequentially complete locally convex topological vector space we show that the perturbed abstract Cauchy problem has a unique solution when the perturbation operator and the forcing term function satisfy certain conditions. A consequence of the abstract result is that it can be directly applied to obtain a generalized solution of the photon transport problem.

Keywords:photon transport, $C_{0}$-semigroup
Categories:35K30, 47D03

55. CMB 2010 (vol 54 pp. 3)

Bakonyi, M.; Timotin, D.
Extensions of Positive Definite Functions on Amenable Groups
Let $S$ be a subset of an amenable group $G$ such that $e\in S$ and $S^{-1}=S$. The main result of this paper states that if the Cayley graph of $G$ with respect to $S$ has a certain combinatorial property, then every positive definite operator-valued function on $S$ can be extended to a positive definite function on $G$. Several known extension results are obtained as corollaries. New applications are also presented.

Categories:43A35, 47A57, 20E05

56. CMB 2010 (vol 54 pp. 141)

Kim, Sang Og; Park, Choonkil
Linear Maps on $C^*$-Algebras Preserving the Set of Operators that are Invertible in $\mathcal{A}/\mathcal{I}$
For $C^*$-algebras $\mathcal{A}$ of real rank zero, we describe linear maps $\phi$ on $\mathcal{A}$ that are surjective up to ideals $\mathcal{I}$, and $\pi(A)$ is invertible in $\mathcal{A}/\mathcal{I}$ if and only if $\pi(\phi(A))$ is invertible in $\mathcal{A}/\mathcal{I}$, where $A\in\mathcal{A}$ and $\pi:\mathcal{A}\to\mathcal{A}/\mathcal{I}$ is the quotient map. We also consider similar linear maps preserving zero products on the Calkin algebra.

Keywords:preservers, Jordan automorphisms, invertible operators, zero products
Categories:47B48, 47A10, 46H10

57. CMB 2010 (vol 53 pp. 550)

Shalit, Orr Moshe
Representing a Product System Representation as a Contractive Semigroup and Applications to Regular Isometric Dilations
In this paper we propose a new technical tool for analyzing representations of Hilbert $C^*$-product systems. Using this tool, we give a new proof that every doubly commuting representation over $\mathbb{N}^k$ has a regular isometric dilation, and we also prove sufficient conditions for the existence of a regular isometric dilation of representations over more general subsemigroups of $\mathbb R_{+}^k$.

Categories:47A20, 46L08

58. CMB 2010 (vol 53 pp. 398)

Botelho, Fernanda; Jamison, James
Projections in the Convex Hull of Surjective Isometries
We characterize those linear projections represented as a convex combination of two surjective isometries on standard Banach spaces of continuous functions with values in a strictly convex Banach space.

Keywords:isometry, convex combination of isometries, generalized bi-circular projections
Categories:47A65, 47B15, 47B37

59. CMB 2010 (vol 53 pp. 466)

Dubarbie, Luis
Separating Maps between Spaces of Vector-Valued Absolutely Continuous Functions
In this paper we give a description of separating or disjointness preserving linear bijections on spaces of vector-valued absolutely continuous functions defined on compact subsets of the real line. We obtain that they are continuous and biseparating in the finite-dimensional case. The infinite-dimensional case is also studied.

Keywords:separating maps, disjointness preserving, vector-valued absolutely continuous functions, automatic continuity
Categories:47B38, 46E15, 46E40, 46H40, 47B33

60. CMB 2008 (vol 51 pp. 604)

{\'S}liwa, Wies{\l}aw
The Invariant Subspace Problem for Non-Archimedean Banach Spaces
It is proved that every infinite-dimensional non-archimedean Banach space of countable type admits a linear continuous operator without a non-trivial closed invariant subspace. This solves a problem stated by A.~C.~M. van Rooij and W.~H. Schikhof in 1992.

Keywords:invariant subspaces, non-archimedean Banach spaces
Categories:47S10, 46S10, 47A15

61. CMB 2008 (vol 51 pp. 481)

Bayart, Frédéric
Universal Inner Functions on the Ball
It is shown that given any sequence of automorphisms $(\phi_k)_k$ of the unit ball $\bn$ of $\cn$ such that $\|\phi_k(0)\|$ tends to $1$, there exists an inner function $I$ such that the family of ``non-Euclidean translates" $(I\circ\phi_k)_k$ is locally uniformly dense in the unit ball of $H^\infty(\bn)$.

Keywords:inner functions, automorphisms of the ball, universality
Categories:32A35, 30D50, 47B38

62. CMB 2008 (vol 51 pp. 372)

Ezquerro, J. A.; Hernández, M. A.
Picard's Iterations for Integral Equations of Mixed Hammerstein Type
A new semilocal convergence result for the Picard method is presented, where the main required condition in the contraction mapping principle is relaxed.

Keywords:nonlinear equations in Banach spaces, successive approximations, semilocal convergence theorem, Picard's iteration, Hammerstein integral equations
Categories:45G10, 47H99, 65J15

63. CMB 2008 (vol 51 pp. 378)

Izuchi, Kou Hei
Cyclic Vectors in Some Weighted $L^p$ Spaces of Entire Functions
In this paper, we generalize a result recently obtained by the author. We characterize the cyclic vectors in $\Lp$. Let $f\in\Lp$ and $f\poly$ be contained in the space. We show that $f$ is non-vanishing if and only if $f$ is cyclic.

Keywords:weighted $L^p$ spaces of entire functions, cyclic vectors
Categories:47A16, 46J15, 46H25

64. CMB 2008 (vol 51 pp. 67)

Kalton, Nigel; Sukochev, Fyodor
Rearrangement-Invariant Functionals with Applications to Traces on Symmetrically Normed Ideals
We present a construction of singular rearrangement invariant functionals on Marcinkiewicz function/operator spaces. The functionals constructed differ from all previous examples in the literature in that they fail to be symmetric. In other words, the functional $\phi$ fails the condition that if $x\pprec y$ (Hardy-Littlewood-Polya submajorization) and $0\leq x,y$, then $0\le \phi(x)\le \phi(y).$ We apply our results to singular traces on symmetric operator spaces (in particular on symmetrically-normed ideals of compact operators), answering questions raised by Guido and Isola.

Categories:46L52, 47B10, 46E30

65. CMB 2007 (vol 50 pp. 172)

Aron, Richard; Gorkin, Pamela
An Infinite Dimensional Vector Space of Universal Functions for $H^\infty$ of the Ball
We show that there exists a closed infinite dimensional subspace of $H^\infty(B^n)$ such that every function of norm one is universal for some sequence of automorphisms of $B^n$.

Categories:47B38, 47B33, 46J10

66. CMB 2007 (vol 50 pp. 85)

Han, Deguang
Classification of Finite Group-Frames and Super-Frames
Given a finite group $G$, we examine the classification of all frame representations of $G$ and the classification of all $G$-frames, \emph{i.e.,} frames induced by group representations of $G$. We show that the exact number of equivalence classes of $G$-frames and the exact number of frame representations can be explicitly calculated. We also discuss how to calculate the largest number $L$ such that there exists an $L$-tuple of strongly disjoint $G$-frames.

Keywords:frames, group-frames, frame representations, disjoint frames
Categories:42C15, 46C05, 47B10

67. CMB 2006 (vol 49 pp. 117)

Levene, R. H.
A Double Triangle Operator Algebra From $SL_2(\R)$
We consider the w$^*$-closed operator algebra $\cA_+$ generated by the image of the semigroup $SL_2(\R_+)$ under a unitary representation $\rho$ of $SL_2(\R)$ on the Hilbert~space $L_2(\R)$. We show that $\cA_+$ is a reflexive operator algebra and $\cA_+=\Alg\cD$ where $\cD$ is a double triangle subspace lattice. Surprisingly, $\cA_+$ is also generated as a w$^*$-closed algebra by the image under $\rho$ of a strict subsemigroup of $SL_2(\R_+)$.

Categories:46K50, 47L55

68. CMB 2005 (vol 48 pp. 607)

Park, Efton
Toeplitz Algebras and Extensions of\\Irrational Rotation Algebras
For a given irrational number $\theta$, we define Toeplitz operators with symbols in the irrational rotation algebra ${\mathcal A}_\theta$, and we show that the $C^*$-algebra $\mathcal T({\mathcal A}_\theta)$ generated by these Toeplitz operators is an extension of ${\mathcal A}_\theta$ by the algebra of compact operators. We then use these extensions to explicitly exhibit generators of the group $KK^1({\mathcal A}_\theta,\mathbb C)$. We also prove an index theorem for $\mathcal T({\mathcal A}_\theta)$ that generalizes the standard index theorem for Toeplitz operators on the circle.

Keywords:Toeplitz operators, irrational rotation algebras, index theory
Categories:47B35, 46L80

69. CMB 2005 (vol 48 pp. 409)

Gauthier, P. M.; Xiao, J.
The Existence of Universal Inner Functions on the Unit Ball of $\mathbb{C}^n$
It is shown that there exists an inner function $I$ defined on the unit ball ${\bf B}^n$ of ${\mathbb C}^n$ such that each function holomorphic on ${\bf B}^n$ and bounded by $1$ can be approximated by ``non-Euclidean translates" of $I$.

Keywords:universal inner functions
Categories:32A35, 30D50, 47B38

70. CMB 2005 (vol 48 pp. 251)

Murphy, G. J.
The Index Theory Associated to a Non-Finite Trace on a $C^\ast$-Algebra
The index theory considered in this paper, a generalisation of the classical Fredholm index theory, is obtained in terms of a non-finite trace on a unital $C^\ast$-algebra. We relate it to the index theory of M.~Breuer, which is developed in a von~Neumann algebra setting, by means of a representation theorem. We show how our new index theory can be used to obtain an index theorem for Toeplitz operators on the compact group $\mathbf{U}(2)$, where the classical index theory does not give any interesting result.

Categories:46L, 47B35, 47L80

71. CMB 2005 (vol 48 pp. 97)

Katavolos, Aristides; Paulsen, Vern I.
On the Ranges of Bimodule Projections
We develop a symbol calculus for normal bimodule maps over a masa that is the natural analogue of the Schur product theory. Using this calculus we are easily able to give a complete description of the ranges of contractive normal bimodule idempotents that avoids the theory of J*-algebras. We prove that if $P$ is a normal bimodule idempotent and $\|P\| < 2/\sqrt{3}$ then $P$ is a contraction. We finish with some attempts at extending the symbol calculus to non-normal maps.

Categories:46L15, 47L25

72. CMB 2004 (vol 47 pp. 615)

Randrianantoanina, Narcisse
$C^*$-Algebras and Factorization Through Diagonal Operators
Let $\cal A$ be a $C^*$-algebra and $E$ be a Banach space with the Radon-Nikodym property. We prove that if $j$ is an embedding of $E$ into an injective Banach space then for every absolutely summing operator $T:\mathcal{A}\longrightarrow E$, the composition $j \circ T$ factors through a diagonal operator from $l^{2}$ into $l^{1}$. In particular, $T$ factors through a Banach space with the Schur property. Similarly, we prove that for $2
Keywords:$C^*$-algebras, summing operators, diagonal operators,, Radon-Nikodym property
Categories:46L50, 47D15

73. CMB 2004 (vol 47 pp. 504)

Cardoso, Fernando; Vodev, Georgi
High Frequency Resolvent Estimates and Energy Decay of Solutions to the Wave Equation
We prove an uniform H\"older continuity of the resolvent of the Laplace-Beltrami operator on the real axis for a class of asymptotically Euclidean Riemannian manifolds. As an application we extend a result of Burq on the behaviour of the local energy of solutions to the wave equation.

Categories:35B37, 35J15, 47F05

74. CMB 2004 (vol 47 pp. 456)

Seto, Michio
On the Berger-Coburn-Lebow Problem for Hardy Submodules
In this paper we shall give an affirmative solution to a problem, posed by Berger, Coburn and Lebow, for $C^{\ast}$-algebras on Hardy submodules.

Keywords:Hardy submodules

75. CMB 2004 (vol 47 pp. 369)

Fošner, Ajda; Šemrl, Peter
Spectrally Bounded Linear Maps on ${\cal B}(X)$
We characterize surjective linear maps on ${\cal B}(X)$ that are spectrally bounded and spectrally bounded below.

Keywords:spectrally bounded linear map.
   1 2 3 4 5    

© Canadian Mathematical Society, 2017 :