51. CMB 2011 (vol 54 pp. 255)
 Dehaye, PaulOlivier

On an Identity due to Bump and Diaconis, and Tracy and Widom
A classical question for a Toeplitz matrix with given symbol is how to
compute asymptotics for the determinants of its reductions to finite
rank. One can also consider how those asymptotics are affected when
shifting an initial set of rows and columns (or, equivalently,
asymptotics of their minors). Bump and Diaconis
obtained a formula for such shifts involving Laguerre polynomials and
sums over symmetric groups. They also showed how the Heine identity
extends for such minors, which makes this question relevant to Random
Matrix Theory. Independently, Tracy and Widom
used the WienerHopf factorization to
express those shifts in terms of products of infinite matrices. We
show directly why those two expressions are equal and uncover some
structure in both formulas that was unknown to their authors. We
introduce a mysterious differential operator on symmetric functions
that is very similar to vertex operators. We show that the
BumpDiaconisTracyWidom identity is a differentiated version of the
classical JacobiTrudi identity.
Keywords:Toeplitz matrices, JacobiTrudi identity, SzegÅ limit theorem, Heine identity, WienerHopf factorization Categories:47B35, 05E05, 20G05 

52. CMB 2010 (vol 54 pp. 527)
 Preda, Ciprian; Sipos, Ciprian

On the Dichotomy of the Evolution Families: A DiscreteArgument Approach
We establish a discretetime criteria guaranteeing the existence of an
exponential dichotomy in the continuoustime
behavior of an abstract evolution family. We prove that an evolution
family ${\cal U}=\{U(t,s)\}_{t
\geq s\geq 0}$ acting on a Banach space $X$ is uniformly
exponentially dichotomic (with respect to its continuoustime
behavior) if and only if the
corresponding difference equation with the inhomogeneous term from
a vectorvalued Orlicz sequence space $l^\Phi(\mathbb{N}, X)$
admits
a solution in the same $l^\Phi(\mathbb{N},X)$. The technique of
proof effectively eliminates the continuity hypothesis on the
evolution family (\emph{i.e.,} we do not assume that $U(\,\cdot\,,s)x$
or $U(t,\,\cdot\,)x$ is continuous on $[s,\infty)$, and respectively
$[0,t]$). Thus, some known results given by
Coffman and Schaffer, Perron, and Ta Li are extended.
Keywords:evolution families, exponential dichotomy, Orlicz sequence spaces, admissibility Categories:34D05, 47D06, 93D20 

53. CMB 2010 (vol 54 pp. 364)
54. CMB 2010 (vol 54 pp. 21)
 Bouali, S.; Echchad, M.

Generalized Dsymmetric Operators II
Let $H$ be a separable,
infinitedimensional, complex Hilbert space and let $A, B\in{\mathcal L
}(H)$, where ${\mathcal L}(H)$ is the algebra of all bounded linear
operators on $H$. Let $\delta_{AB}\colon {\mathcal L}(H)\rightarrow {\mathcal
L}(H)$ denote the generalized derivation $\delta_{AB}(X)=AXXB$.
This note will initiate a study on the class of pairs $(A,B)$ such
that $\overline{{\mathcal R}(\delta_{AB})}= \overline{{\mathcal
R}(\delta_{A^{\ast}B^{\ast}})}$.
Keywords:generalized derivation, adjoint, Dsymmetric operator, normal operator Categories:47B47, 47B10, 47A30 

55. CMB 2010 (vol 54 pp. 28)
 Chang, YuHsien; Hong, ChengHong

Generalized Solution of the Photon Transport Problem
The purpose of this paper is to show the existence of a
generalized solution of the photon transport problem. By means of the theory of
equicontinuous $C_{0}$semigroup on a sequentially complete locally convex
topological vector space we show that the perturbed abstract Cauchy problem
has a unique solution when the perturbation operator and the forcing term
function satisfy certain conditions. A consequence of the abstract result is
that it can be directly applied to obtain a generalized solution of the photon
transport problem.
Keywords:photon transport, $C_{0}$semigroup Categories:35K30, 47D03 

56. CMB 2010 (vol 54 pp. 141)
 Kim, Sang Og; Park, Choonkil

Linear Maps on $C^*$Algebras Preserving the Set of Operators that are Invertible in $\mathcal{A}/\mathcal{I}$
For $C^*$algebras $\mathcal{A}$ of real rank zero, we describe
linear maps $\phi$ on $\mathcal{A}$ that are surjective up to ideals
$\mathcal{I}$, and $\pi(A)$ is invertible in $\mathcal{A}/\mathcal{I}$ if and only if
$\pi(\phi(A))$ is invertible in $\mathcal{A}/\mathcal{I}$, where $A\in\mathcal{A}$ and
$\pi:\mathcal{A}\to\mathcal{A}/\mathcal{I}$ is the quotient map. We also consider similar
linear maps preserving zero products on the Calkin algebra.
Keywords:preservers, Jordan automorphisms, invertible operators, zero products Categories:47B48, 47A10, 46H10 

57. CMB 2010 (vol 54 pp. 3)
 Bakonyi, M.; Timotin, D.

Extensions of Positive Definite Functions on Amenable Groups
Let $S$ be a subset of an amenable group $G$ such that $e\in S$ and
$S^{1}=S$. The main result of this paper states that if the Cayley
graph of $G$ with respect to $S$ has a certain combinatorial property,
then every positive definite operatorvalued function on $S$ can be
extended to a positive definite function on $G$. Several known
extension results are obtained as corollaries. New applications are
also presented.
Categories:43A35, 47A57, 20E05 

58. CMB 2010 (vol 53 pp. 550)
59. CMB 2010 (vol 53 pp. 398)
60. CMB 2010 (vol 53 pp. 466)
 Dubarbie, Luis

Separating Maps between Spaces of VectorValued Absolutely Continuous Functions
In this paper we give a description of separating or disjointness preserving linear bijections on spaces of vectorvalued absolutely continuous functions defined on compact subsets of the real line. We obtain that they are continuous and biseparating in the finitedimensional case. The infinitedimensional case is also studied.
Keywords:separating maps, disjointness preserving, vectorvalued absolutely continuous functions, automatic continuity Categories:47B38, 46E15, 46E40, 46H40, 47B33 

61. CMB 2008 (vol 51 pp. 604)
 {\'S}liwa, Wies{\l}aw

The Invariant Subspace Problem for NonArchimedean Banach Spaces
It is proved that every infinitedimensional
nonarchimedean Banach space of countable type admits a linear
continuous operator without a nontrivial closed invariant
subspace. This solves a problem stated by A.~C.~M. van Rooij and
W.~H. Schikhof in 1992.
Keywords:invariant subspaces, nonarchimedean Banach spaces Categories:47S10, 46S10, 47A15 

62. CMB 2008 (vol 51 pp. 481)
 Bayart, Frédéric

Universal Inner Functions on the Ball
It is shown that given any sequence of automorphisms $(\phi_k)_k$ of the
unit ball $\bn$ of $\cn$ such that $\\phi_k(0)\$ tends to $1$,
there exists an inner function
$I$ such that the family of ``nonEuclidean translates"
$(I\circ\phi_k)_k$ is locally uniformly dense in the unit ball of
$H^\infty(\bn)$.
Keywords:inner functions, automorphisms of the ball, universality Categories:32A35, 30D50, 47B38 

63. CMB 2008 (vol 51 pp. 372)
64. CMB 2008 (vol 51 pp. 378)
 Izuchi, Kou Hei

Cyclic Vectors in Some Weighted $L^p$ Spaces of Entire Functions
In this paper,
we generalize a result recently obtained by the author.
We characterize the cyclic vectors in $\Lp$.
Let $f\in\Lp$ and $f\poly$ be contained in the space.
We show that $f$ is nonvanishing if and only if $f$ is cyclic.
Keywords:weighted $L^p$ spaces of entire functions, cyclic vectors Categories:47A16, 46J15, 46H25 

65. CMB 2008 (vol 51 pp. 67)
 Kalton, Nigel; Sukochev, Fyodor

RearrangementInvariant Functionals with Applications to Traces on Symmetrically Normed Ideals
We present a construction of singular rearrangement
invariant functionals on Marcinkiewicz function/operator spaces.
The functionals constructed differ from all previous examples in
the literature in that they fail to be symmetric. In other words,
the functional $\phi$ fails the condition that if $x\pprec y$
(HardyLittlewoodPolya submajorization) and $0\leq x,y$, then
$0\le \phi(x)\le \phi(y).$ We apply our results to singular traces
on symmetric operator spaces (in particular on
symmetricallynormed ideals of compact operators), answering
questions raised by Guido and Isola.
Categories:46L52, 47B10, 46E30 

66. CMB 2007 (vol 50 pp. 172)
67. CMB 2007 (vol 50 pp. 85)
 Han, Deguang

Classification of Finite GroupFrames and SuperFrames
Given a finite group $G$, we examine the classification of all
frame representations of $G$ and the classification of all
$G$frames, \emph{i.e.,} frames induced by group representations of $G$.
We show that the exact number of equivalence classes of $G$frames
and the exact number of frame representations can be explicitly
calculated. We also discuss how to calculate the largest number
$L$ such that there exists an $L$tuple of strongly disjoint
$G$frames.
Keywords:frames, groupframes, frame representations, disjoint frames Categories:42C15, 46C05, 47B10 

68. CMB 2006 (vol 49 pp. 117)
 Levene, R. H.

A Double Triangle Operator Algebra From $SL_2(\R)$
We consider the w$^*$closed operator algebra $\cA_+$ generated
by the image of the semigroup $SL_2(\R_+)$ under a unitary representation
$\rho$ of $SL_2(\R)$ on the Hilbert~space $L_2(\R)$.
We show that $\cA_+$ is a reflexive operator algebra and
$\cA_+=\Alg\cD$ where $\cD$ is a double triangle subspace
lattice. Surprisingly, $\cA_+$ is also generated as a
w$^*$closed algebra by the image under $\rho$ of a strict
subsemigroup of $SL_2(\R_+)$.
Categories:46K50, 47L55 

69. CMB 2005 (vol 48 pp. 607)
 Park, Efton

Toeplitz Algebras and Extensions of\\Irrational Rotation Algebras
For a given irrational number $\theta$, we define Toeplitz operators with
symbols in the irrational rotation algebra ${\mathcal A}_\theta$,
and we show that the $C^*$algebra $\mathcal T({\mathcal
A}_\theta)$ generated by these Toeplitz operators is an extension
of ${\mathcal A}_\theta$ by the algebra of compact operators. We
then use these extensions to explicitly exhibit generators of the
group $KK^1({\mathcal A}_\theta,\mathbb C)$. We also prove an
index theorem for $\mathcal T({\mathcal A}_\theta)$ that
generalizes the standard index theorem for Toeplitz operators on
the circle.
Keywords:Toeplitz operators, irrational rotation algebras, index theory Categories:47B35, 46L80 

70. CMB 2005 (vol 48 pp. 409)
71. CMB 2005 (vol 48 pp. 251)
 Murphy, G. J.

The Index Theory Associated to a NonFinite Trace on a $C^\ast$Algebra
The index theory considered in this paper, a
generalisation of the classical Fredholm index theory, is obtained
in terms of a nonfinite trace on a unital $C^\ast$algebra. We relate
it to the index theory of M.~Breuer, which is developed in a
von~Neumann algebra setting, by means of a representation theorem.
We show how our new index theory can be used to obtain an index
theorem for Toeplitz operators on the compact group $\mathbf{U}(2)$,
where the classical index theory does not give any interesting result.
Categories:46L, 47B35, 47L80 

72. CMB 2005 (vol 48 pp. 97)
 Katavolos, Aristides; Paulsen, Vern I.

On the Ranges of Bimodule Projections
We develop a symbol calculus for normal bimodule maps over a masa
that is the natural analogue of the Schur product theory. Using
this calculus we are easily able to give a complete description of
the ranges of contractive normal bimodule idempotents that avoids
the theory of J*algebras.
We prove that if $P$ is a normal
bimodule idempotent and $\P\ < 2/\sqrt{3}$ then $P$ is a
contraction. We finish with some attempts at extending the symbol
calculus to nonnormal maps.
Categories:46L15, 47L25 

73. CMB 2004 (vol 47 pp. 615)
 Randrianantoanina, Narcisse

$C^*$Algebras and Factorization Through Diagonal Operators
Let $\cal A$ be a $C^*$algebra and $E$ be a Banach space with
the RadonNikodym property. We prove that if $j$ is an embedding
of $E$ into an injective Banach space then for every absolutely
summing operator $T:\mathcal{A}\longrightarrow E$, the composition
$j \circ T$ factors through a diagonal operator from $l^{2}$ into
$l^{1}$. In particular, $T$ factors through a Banach space with
the Schur property. Similarly, we prove that for $2
Keywords:$C^*$algebras, summing operators, diagonal operators,, RadonNikodym property Categories:46L50, 47D15 

74. CMB 2004 (vol 47 pp. 504)
75. CMB 2004 (vol 47 pp. 456)