26. CMB 2013 (vol 57 pp. 463)
 Bownik, Marcin; Jasper, John

Constructive Proof of Carpenter's Theorem
We give a constructive proof of Carpenter's Theorem due to Kadison.
Unlike the original proof our approach also yields the
real case of this theorem.
Keywords:diagonals of projections, the SchurHorn theorem, the Pythagorean theorem, the Carpenter theorem, spectral theory Categories:42C15, 47B15, 46C05 

27. CMB 2013 (vol 57 pp. 270)
 Didas, Michael; Eschmeier, Jörg

Derivations on Toeplitz Algebras
Let $H^2(\Omega)$ be the Hardy space on a strictly pseudoconvex domain $\Omega \subset
\mathbb{C}^n$,
and let $A \subset L^\infty(\partial \Omega)$ denote the subalgebra of all $L^\infty$functions $f$
with compact Hankel operator $H_f$. Given any closed subalgebra $B \subset A$ containing $C(\partial \Omega)$,
we describe the first Hochschild cohomology group of the
corresponding Toeplitz algebra $\mathcal(B) \subset B(H^2(\Omega))$.
In particular, we show that every derivation on $\mathcal{T}(A)$ is inner. These results are new even for $n=1$,
where it follows that every derivation on $\mathcal{T}(H^\infty+C)$ is inner, while there are noninner
derivations on $\mathcal{T}(H^\infty+C(\partial \mathbb{B}_n))$ over
the unit ball $\mathbb{B}_n$ in dimension $n\gt 1$.
Keywords:derivations, Toeplitz algebras, strictly pseudoconvex domains Categories:47B47, 47B35, 47L80 

28. CMB 2012 (vol 57 pp. 166)
29. CMB 2012 (vol 57 pp. 80)
 Khemphet, Anchalee; Peters, Justin R.

Semicrossed Products of the Disk Algebra and the Jacobson Radical
We consider semicrossed products of the disk algebra with respect to
endomorphisms defined by finite Blaschke products. We characterize the Jacobson radical
of these operator algebras. Furthermore, in the case the finite Blaschke product is elliptic,
we show that the semicrossed product contains no nonzero quasinilpotent
elements. However, if the finite Blaschke product is hyperbolic or parabolic with positive hyperbolic step,
the Jacobson radical is nonzero and a proper subset of the set of quasinilpotent elements.
Keywords:semicrossed product, disk algebra, Jacobson radical Categories:47L65, 47L20, 30J10, 30H50 

30. CMB 2012 (vol 56 pp. 477)
 Ayadi, Adlene

Hypercyclic Abelian Groups of Affine Maps on $\mathbb{C}^{n}$
We give a characterization of hypercyclic abelian group
$\mathcal{G}$ of affine maps on $\mathbb{C}^{n}$. If $\mathcal{G}$
is finitely generated, this characterization is explicit. We prove
in particular
that no abelian group generated by $n$ affine maps on $\mathbb{C}^{n}$ has a dense orbit.
Keywords:affine, hypercyclic, dense, orbit, affine group, abelian Categories:37C85, 47A16 

31. CMB 2012 (vol 57 pp. 145)
 Mustafayev, H. S.

The Essential Spectrum of the Essentially Isometric Operator
Let $T$ be a contraction on a complex, separable, infinite dimensional
Hilbert space and let $\sigma \left( T\right) $ (resp. $\sigma _{e}\left(
T\right) )$ be its spectrum (resp. essential spectrum). We assume that $T$
is an essentially isometric operator, that is $I_{H}T^{\ast }T$ is compact.
We show that if $D\diagdown \sigma \left( T\right) \neq \emptyset ,$ then
for every $f$ from the discalgebra,
\begin{equation*}
\sigma _{e}\left( f\left( T\right) \right) =f\left( \sigma _{e}\left(
T\right) \right) ,
\end{equation*}
where $D$ is the open unit disc. In addition, if $T$ lies in the class
$ C_{0\cdot }\cup C_{\cdot 0},$ then
\begin{equation*}
\sigma _{e}\left( f\left( T\right) \right) =f\left( \sigma \left( T\right)
\cap \Gamma \right) ,
\end{equation*}
where $\Gamma $ is the unit circle. Some related problems are also discussed.
Keywords:Hilbert space, contraction, essentially isometric operator, (essential) spectrum, functional calculus Categories:47A10, 47A53, 47A60, 47B07 

32. CMB 2012 (vol 57 pp. 25)
 Bourin, JeanChristophe; Harada, Tetsuo; Lee, EunYoung

Subadditivity Inequalities for Compact Operators
Some subadditivity inequalities for matrices and concave functions also hold for Hilbert space operators, but (unfortunately!) with an additional $\varepsilon$ term. It seems not possible to erase this residual term. However, in case of compact operators we show that the $\varepsilon$ term is unnecessary. Further, these inequalities are strict in a certain sense when some natural assumptions are satisfied. The discussion also stresses on matrices and their compressions and several open questions or conjectures are considered, both in the matrix and operator settings.
Keywords:concave or convex function, Hilbert space, unitary orbits, compact operators, compressions, matrix inequalities Categories:47A63, 15A45 

33. CMB 2011 (vol 56 pp. 593)
34. CMB 2011 (vol 56 pp. 459)
 Athavale, Ameer; Patil, Pramod

On Certain Multivariable Subnormal Weighted Shifts and their Duals
To every subnormal $m$variable weighted shift $S$ (with bounded
positive weights) corresponds a positive Reinhardt measure $\mu$
supported on a compact Reinhardt subset of $\mathbb C^m$. We show that, for
$m \geq 2$, the dimensions of the $1$st cohomology vector spaces
associated with the Koszul complexes of $S$ and its dual ${\tilde S}$
are different if a certain radial function happens to be integrable
with respect to $\mu$ (which is indeed the case with many classical
examples). In particular, $S$ cannot in that case be similar to
${\tilde S}$. We next prove that, for $m \geq 2$, a Fredholm subnormal
$m$variable weighted shift $S$ cannot be similar to its dual.
Keywords:subnormal, Reinhardt, Betti numbers Category:47B20 

35. CMB 2011 (vol 56 pp. 39)
 Ben Amara, Jamel

Comparison Theorem for Conjugate Points of a Fourthorder Linear Differential Equation
In 1961, J. Barrett showed that if the first conjugate point
$\eta_1(a)$ exists for the differential equation $(r(x)y'')''=
p(x)y,$ where $r(x)\gt 0$ and $p(x)\gt 0$, then so does the first
systemsconjugate point $\widehat\eta_1(a)$. The aim of this note is to
extend this result to the general equation with middle term
$(q(x)y')'$ without further restriction on $q(x)$, other than
continuity.
Keywords:fourthorder linear differential equation, conjugate points, systemconjugate points, subwronskians Categories:47E05, 34B05, 34C10 

36. CMB 2011 (vol 56 pp. 400)
37. CMB 2011 (vol 56 pp. 229)
 Arvanitidis, Athanasios G.; Siskakis, Aristomenis G.

CesÃ ro Operators on the Hardy Spaces of the HalfPlane
In this article we study the CesÃ ro
operator
$$
\mathcal{C}(f)(z)=\frac{1}{z}\int_{0}^{z}f(\zeta)\,d\zeta,
$$
and its companion operator $\mathcal{T}$ on Hardy spaces of the
upper half plane. We identify $\mathcal{C}$ and $\mathcal{T}$ as
resolvents for appropriate semigroups of composition operators and we
find the norm and the spectrum in each case. The relation of
$\mathcal{C}$ and $\mathcal{T}$ with the corresponding Ces\`{a}ro
operators on Lebesgue spaces $L^p(\mathbb R)$ of the boundary line is also
discussed.
Keywords:CesÃ ro operators, Hardy spaces, semigroups, composition operators Categories:47B38, 30H10, 47D03 

38. CMB 2011 (vol 55 pp. 646)
 Zhou, Jiang; Ma, Bolin

Marcinkiewicz Commutators with Lipschitz Functions in Nonhomogeneous Spaces
Under the assumption that $\mu$ is a nondoubling
measure, we study certain commutators generated by the
Lipschitz function and the Marcinkiewicz integral whose kernel
satisfies a HÃ¶rmandertype condition. We establish the boundedness
of these commutators on the Lebesgue spaces, Lipschitz spaces, and
Hardy spaces. Our results are extensions of known theorems in the
doubling case.
Keywords:non doubling measure, Marcinkiewicz integral, commutator, ${\rm Lip}_{\beta}(\mu)$, $H^1(\mu)$ Categories:42B25, 47B47, 42B20, 47A30 

39. CMB 2011 (vol 55 pp. 673)
 Aizenbud, Avraham; Gourevitch, Dmitry

Multiplicity Free Jacquet Modules
Let $F$ be a nonArchimedean local field or a finite field.
Let $n$ be a natural number and $k$ be $1$ or $2$.
Consider $G:=\operatorname{GL}_{n+k}(F)$ and let
$M:=\operatorname{GL}_n(F) \times \operatorname{GL}_k(F)\lt G$ be a maximal Levi subgroup.
Let $U\lt G$ be the corresponding unipotent subgroup and let $P=MU$ be the corresponding parabolic subgroup.
Let $J:=J_M^G: \mathcal{M}(G) \to \mathcal{M}(M)$ be the Jacquet functor, i.e., the functor of coinvariants with respect to $U$.
In this paper we prove that $J$ is a multiplicity free functor, i.e.,
$\dim \operatorname{Hom}_M(J(\pi),\rho)\leq 1$,
for any irreducible representations $\pi$ of $G$ and $\rho$ of $M$.
We adapt the classical method of Gelfand and Kazhdan, which proves the ``multiplicity free" property of certain representations to prove the ``multiplicity free" property of certain functors.
At the end we discuss whether other Jacquet functors are multiplicity free.
Keywords:multiplicity one, Gelfand pair, invariant distribution, finite group Categories:20G05, 20C30, 20C33, 46F10, 47A67 

40. CMB 2011 (vol 55 pp. 555)
 Michalowski, Nicholas; Rule, David J.; Staubach, Wolfgang

Weighted $L^p$ Boundedness of Pseudodifferential Operators and Applications
In this paper we prove weighted norm inequalities with weights in
the $A_p$ classes, for pseudodifferential operators with symbols in
the class ${S^{n(\rho 1)}_{\rho, \delta}}$ that fall outside the
scope of CalderÃ³nZygmund theory. This is accomplished by
controlling the sharp function of the pseudodifferential operator by
HardyLittlewood type maximal functions. Our weighted norm
inequalities also yield $L^{p}$ boundedness of commutators of
functions of bounded mean oscillation with a wide class of operators
in $\mathrm{OP}S^{m}_{\rho, \delta}$.
Keywords:weighted norm inequality, pseudodifferential operator, commutator estimates Categories:42B20, 42B25, 35S05, 47G30 

41. CMB 2011 (vol 54 pp. 654)
 Forrest, Brian E.; Runde, Volker

Norm One Idempotent $cb$Multipliers with Applications to the Fourier Algebra in the $cb$Multiplier Norm
For a locally compact group $G$, let $A(G)$ be its Fourier algebra, let $M_{cb}A(G)$ denote the completely
bounded multipliers of $A(G)$, and let $A_{\mathit{Mcb}}(G)$ stand for the closure of $A(G)$ in $M_{cb}A(G)$. We
characterize the norm one idempotents in $M_{cb}A(G)$: the indicator function of a set $E \subset G$ is a norm
one idempotent in $M_{cb}A(G)$ if and only if $E$ is a coset of an open subgroup of $G$. As applications, we
describe the closed ideals of $A_{\mathit{Mcb}}(G)$ with an approximate identity bounded by $1$, and we characterize
those $G$ for which $A_{\mathit{Mcb}}(G)$ is $1$amenable in the sense of B. E. Johnson. (We can even slightly
relax the norm bounds.)
Keywords:amenability, bounded approximate identity, $cb$multiplier norm, Fourier algebra, norm one idempotent Categories:43A22, 20E05, 43A30, 46J10, 46J40, 46L07, 47L25 

42. CMB 2011 (vol 54 pp. 456)
 Gustafson, Karl

On Operator Sum and Product Adjoints and Closures
We comment on domain conditions that regulate when the adjoint of the
sum or product of two unbounded operators is the sum or product of their
adjoints, and related closure issues. The quantum mechanical problem PHP
essentially selfadjoint for unbounded Hamiltonians is addressed, with new
results.
Keywords:unbounded operators, adjoints of sums and products, quantum mechanics Category:47A05 

43. CMB 2011 (vol 55 pp. 15)
44. CMB 2011 (vol 55 pp. 882)
 Xueli, Song; Jigen, Peng

Equivalence of $L_p$ Stability and Exponential Stability of Nonlinear Lipschitzian Semigroups
$L_p$ stability and exponential stability are two important concepts
for nonlinear dynamic systems. In this paper, we prove that a
nonlinear exponentially bounded Lipschitzian semigroup is
exponentially stable if and only if the semigroup is $L_p$ stable
for some $p>0$. Based on the equivalence, we derive two sufficient
conditions for exponential stability of the nonlinear semigroup. The
results obtained extend and improve some existing ones.
Keywords:exponentially stable, $L_p$ stable, nonlinear Lipschitzian semigroups Categories:34D05, 47H20 

45. CMB 2011 (vol 54 pp. 506)
 Neamaty, A.; Mosazadeh, S.

On the Canonical Solution of the SturmLiouville Problem with Singularity and Turning Point of Even Order
In this paper, we are going to investigate the canonical property of solutions of
systems of differential equations having a singularity and turning
point of even order. First, by a replacement, we transform the system
to the SturmLiouville equation with turning point. Using of the
asymptotic estimates provided by Eberhard, Freiling, and Schneider
for a special fundamental system of solutions of the SturmLiouville
equation, we study the infinite product representation of solutions of the systems. Then we
transform the SturmLiouville equation with
turning point to the
equation with singularity, then we study the asymptotic behavior of its solutions. Such
representations are relevant to the inverse spectral problem.
Keywords:turning point, singularity, SturmLiouville, infinite products, Hadamard's theorem, eigenvalues Categories:34B05, 34Lxx, 47E05 

46. CMB 2011 (vol 55 pp. 339)
 Loring, Terry A.

From Matrix to Operator Inequalities
We generalize LÃ¶wner's method for proving that matrix monotone
functions are operator monotone. The relation $x\leq y$ on bounded
operators is our model for a definition of $C^{*}$relations
being residually finite dimensional.
Our main result is a metatheorem about theorems involving relations
on bounded operators. If we can show there are residually finite dimensional
relations involved and verify a technical condition, then such a
theorem will follow from its restriction to matrices.
Applications are shown regarding norms of exponentials, the norms
of commutators, and "positive" noncommutative $*$polynomials.
Keywords:$C*$algebras, matrices, bounded operators, relations, operator norm, order, commutator, exponential, residually finite dimensional Categories:46L05, 47B99 

47. CMB 2011 (vol 55 pp. 441)
 Zorboska, Nina

Univalently Induced, Closed Range, Composition Operators on the Blochtype Spaces
While there is a large variety of univalently induced closed range
composition operators on the Bloch space,
we show that the only univalently induced, closed range, composition
operators on the Blochtype spaces $B^{\alpha}$ with $\alpha \ne 1$
are the ones induced by a disc automorphism.
Keywords:composition operators, Blochtype spaces, closed range, univalent Categories:47B35, 32A18 

48. CMB 2011 (vol 54 pp. 498)
 Mortad, Mohammed Hichem

On the Adjoint and the Closure of the Sum of Two Unbounded Operators
We prove, under some conditions on the domains, that the adjoint of
the sum of two unbounded operators is the sum of their adjoints in
both Hilbert and Banach space settings. A similar result about the
closure of operators is also proved. Some interesting consequences
and examples "spice up" the paper.
Keywords:unbounded operators, sum and products of operators, Hilbert and Banach adjoints, selfadjoint operators, closed operators, closure of operators Category:47A05 

49. CMB 2011 (vol 54 pp. 411)
 Davidson, Kenneth R.; Wright, Alex

Operator Algebras with Unique Preduals
We show that every free semigroup algebra has a (strongly) unique
Banach space predual. We also provide a new simpler proof that a
weak$*$ closed unital operator algebra containing a weak$*$
dense subalgebra of compact operators has a unique Banach space
predual.
Keywords:unique predual, free semigroup algebra, CSL algebra Categories:47L50, 46B04, 47L35 

50. CMB 2011 (vol 54 pp. 255)
 Dehaye, PaulOlivier

On an Identity due to Bump and Diaconis, and Tracy and Widom
A classical question for a Toeplitz matrix with given symbol is how to
compute asymptotics for the determinants of its reductions to finite
rank. One can also consider how those asymptotics are affected when
shifting an initial set of rows and columns (or, equivalently,
asymptotics of their minors). Bump and Diaconis
obtained a formula for such shifts involving Laguerre polynomials and
sums over symmetric groups. They also showed how the Heine identity
extends for such minors, which makes this question relevant to Random
Matrix Theory. Independently, Tracy and Widom
used the WienerHopf factorization to
express those shifts in terms of products of infinite matrices. We
show directly why those two expressions are equal and uncover some
structure in both formulas that was unknown to their authors. We
introduce a mysterious differential operator on symmetric functions
that is very similar to vertex operators. We show that the
BumpDiaconisTracyWidom identity is a differentiated version of the
classical JacobiTrudi identity.
Keywords:Toeplitz matrices, JacobiTrudi identity, SzegÅ limit theorem, Heine identity, WienerHopf factorization Categories:47B35, 05E05, 20G05 
