1. CMB 2017 (vol 60 pp. 449)
 Alaghmandan, Mahmood; Crann, Jason

Character Density in Central Subalgebras of Compact Quantum Groups
We investigate quantum group generalizations
of various density results from Fourier analysis on compact groups.
In particular, we establish the density of characters in the
space of fixed points of the conjugation action on $L^2(\mathbb{G})$, and
use this result to show the weak* density and norm density of
characters in $ZL^\infty(\mathbb{G})$ and $ZC(\mathbb{G})$, respectively. As a corollary,
we partially answer an open question of Woronowicz.
At the level of $L^1(\mathbb{G})$, we show that the center
$\mathcal{Z}(L^1(\mathbb{G}))$
is precisely the closed linear span of the quantum characters
for a large class of compact quantum groups, including arbitrary
compact Kac algebras. In the latter setting, we show, in addition,
that $\mathcal{Z}(L^1(\mathbb{G}))$ is a completely complemented
$\mathcal{Z}(L^1(\mathbb{G}))$submodule
of $L^1(\mathbb{G})$.
Keywords:compact quantum group, irreducible character Categories:43A20, 43A40, 46J40 

2. CMB 2011 (vol 54 pp. 654)
 Forrest, Brian E.; Runde, Volker

Norm One Idempotent $cb$Multipliers with Applications to the Fourier Algebra in the $cb$Multiplier Norm
For a locally compact group $G$, let $A(G)$ be its Fourier algebra, let $M_{cb}A(G)$ denote the completely
bounded multipliers of $A(G)$, and let $A_{\mathit{Mcb}}(G)$ stand for the closure of $A(G)$ in $M_{cb}A(G)$. We
characterize the norm one idempotents in $M_{cb}A(G)$: the indicator function of a set $E \subset G$ is a norm
one idempotent in $M_{cb}A(G)$ if and only if $E$ is a coset of an open subgroup of $G$. As applications, we
describe the closed ideals of $A_{\mathit{Mcb}}(G)$ with an approximate identity bounded by $1$, and we characterize
those $G$ for which $A_{\mathit{Mcb}}(G)$ is $1$amenable in the sense of B. E. Johnson. (We can even slightly
relax the norm bounds.)
Keywords:amenability, bounded approximate identity, $cb$multiplier norm, Fourier algebra, norm one idempotent Categories:43A22, 20E05, 43A30, 46J10, 46J40, 46L07, 47L25 

3. CMB 2003 (vol 46 pp. 632)
 Runde, Volker

The Operator Amenability of Uniform Algebras
We prove a quantized version of a theorem by M.~V.~She\u{\i}nberg:
A uniform algebra equipped with its canonical, {\it i.e.}, minimal,
operator space structure is operator amenable if and only if it is
a commutative $C^\ast$algebra.
Keywords:uniform algebras, amenable Banach algebras, operator amenability, minimal, operator space Categories:46H20, 46H25, 46J10, 46J40, 47L25 
