CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 46J40 ( Structure, classification of commutative topological algebras )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2017 (vol 60 pp. 449)

Alaghmandan, Mahmood; Crann, Jason
Character Density in Central Subalgebras of Compact Quantum Groups
We investigate quantum group generalizations of various density results from Fourier analysis on compact groups. In particular, we establish the density of characters in the space of fixed points of the conjugation action on $L^2(\mathbb{G})$, and use this result to show the weak* density and norm density of characters in $ZL^\infty(\mathbb{G})$ and $ZC(\mathbb{G})$, respectively. As a corollary, we partially answer an open question of Woronowicz. At the level of $L^1(\mathbb{G})$, we show that the center $\mathcal{Z}(L^1(\mathbb{G}))$ is precisely the closed linear span of the quantum characters for a large class of compact quantum groups, including arbitrary compact Kac algebras. In the latter setting, we show, in addition, that $\mathcal{Z}(L^1(\mathbb{G}))$ is a completely complemented $\mathcal{Z}(L^1(\mathbb{G}))$-submodule of $L^1(\mathbb{G})$.

Keywords:compact quantum group, irreducible character
Categories:43A20, 43A40, 46J40

2. CMB 2011 (vol 54 pp. 654)

Forrest, Brian E.; Runde, Volker
Norm One Idempotent $cb$-Multipliers with Applications to the Fourier Algebra in the $cb$-Multiplier Norm
For a locally compact group $G$, let $A(G)$ be its Fourier algebra, let $M_{cb}A(G)$ denote the completely bounded multipliers of $A(G)$, and let $A_{\mathit{Mcb}}(G)$ stand for the closure of $A(G)$ in $M_{cb}A(G)$. We characterize the norm one idempotents in $M_{cb}A(G)$: the indicator function of a set $E \subset G$ is a norm one idempotent in $M_{cb}A(G)$ if and only if $E$ is a coset of an open subgroup of $G$. As applications, we describe the closed ideals of $A_{\mathit{Mcb}}(G)$ with an approximate identity bounded by $1$, and we characterize those $G$ for which $A_{\mathit{Mcb}}(G)$ is $1$-amenable in the sense of B. E. Johnson. (We can even slightly relax the norm bounds.)

Keywords:amenability, bounded approximate identity, $cb$-multiplier norm, Fourier algebra, norm one idempotent
Categories:43A22, 20E05, 43A30, 46J10, 46J40, 46L07, 47L25

3. CMB 2003 (vol 46 pp. 632)

Runde, Volker
The Operator Amenability of Uniform Algebras
We prove a quantized version of a theorem by M.~V.~She\u{\i}nberg: A uniform algebra equipped with its canonical, {\it i.e.}, minimal, operator space structure is operator amenable if and only if it is a commutative $C^\ast$-algebra.

Keywords:uniform algebras, amenable Banach algebras, operator amenability, minimal, operator space
Categories:46H20, 46H25, 46J10, 46J40, 47L25

© Canadian Mathematical Society, 2017 : https://cms.math.ca/