Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 46J10 ( Banach algebras of continuous functions, function algebras [See also 46E25] )

  Expand all        Collapse all Results 1 - 9 of 9

1. CMB Online first

Abtahi, Fatemeh; Azizi, Mohsen; Rejali, Ali
Character amenability of the intersection of Lipschitz algebras
Let $(X,d)$ be a metric space and $J\subseteq [0,\infty)$ be nonempty. We study the structure of the arbitrary intersections of Lipschitz algebras, and define a special Banach subalgebra of $\bigcap_{\gamma\in J}\operatorname{Lip}_\gamma X$, denoted by $\operatorname{ILip}_J X$. Mainly, we investigate $C$-character amenability of $\operatorname{ILip}_J X$, in particular Lipschitz algebras. We address a gap in the proof of a recent result in this field. Then we remove this gap, and obtain a necessary and sufficient condition for $C$-character amenability of $\operatorname{ILip}_J X$, specially Lipschitz algebras, under an additional assumption.

Keywords:amenability, character amenability, Lipschitz algebra, metric space
Categories:46H05, 46J10, 11J83

2. CMB 2017 (vol 60 pp. 402)

Shravan Kumar, N.
Invariant Means on a Class of von Neumann Algebras Related to Ultraspherical Hypergroups II
Let $K$ be an ultraspherical hypergroup associated to a locally compact group $G$ and a spherical projector $\pi$ and let $VN(K)$ denote the dual of the Fourier algebra $A(K)$ corresponding to $K.$ In this note, we show that the set of invariant means on $VN(K)$ is singleton if and only if $K$ is discrete. Here $K$ need not be second countable. We also study invariant means on the dual of the Fourier algebra $A_0(K),$ the closure of $A(K)$ in the $cb$-multiplier norm. Finally, we consider generalized translations and generalized invariant means.

Keywords:ultraspherical hypergroup, Fourier algebra, Fourier-Stieltjes algebra, invariant mean, generalized translation, generalized invariant mean
Categories:43A62, 46J10, 43A30, 20N20

3. CMB 2012 (vol 57 pp. 37)

Dashti, Mahshid; Nasr-Isfahani, Rasoul; Renani, Sima Soltani
Character Amenability of Lipschitz Algebras
Let ${\mathcal X}$ be a locally compact metric space and let ${\mathcal A}$ be any of the Lipschitz algebras ${\operatorname{Lip}_{\alpha}{\mathcal X}}$, ${\operatorname{lip}_{\alpha}{\mathcal X}}$ or ${\operatorname{lip}_{\alpha}^0{\mathcal X}}$. In this paper, we show, as a consequence of rather more general results on Banach algebras, that ${\mathcal A}$ is $C$-character amenable if and only if ${\mathcal X}$ is uniformly discrete.

Keywords:character amenable, character contractible, Lipschitz algebras, spectrum
Categories:43A07, 46H05, 46J10

4. CMB 2011 (vol 56 pp. 272)

Cheng, Lixin; Luo, Zhenghua; Zhou, Yu
On Super Weakly Compact Convex Sets and Representation of the Dual of the Normed Semigroup They Generate
In this note, we first give a characterization of super weakly compact convex sets of a Banach space $X$: a closed bounded convex set $K\subset X$ is super weakly compact if and only if there exists a $w^*$ lower semicontinuous seminorm $p$ with $p\geq\sigma_K\equiv\sup_{x\in K}\langle\,\cdot\,,x\rangle$ such that $p^2$ is uniformly Fréchet differentiable on each bounded set of $X^*$. Then we present a representation theorem for the dual of the semigroup $\textrm{swcc}(X)$ consisting of all the nonempty super weakly compact convex sets of the space $X$.

Keywords:super weakly compact set, dual of normed semigroup, uniform Fréchet differentiability, representation
Categories:20M30, 46B10, 46B20, 46E15, 46J10, 49J50

5. CMB 2011 (vol 54 pp. 654)

Forrest, Brian E.; Runde, Volker
Norm One Idempotent $cb$-Multipliers with Applications to the Fourier Algebra in the $cb$-Multiplier Norm
For a locally compact group $G$, let $A(G)$ be its Fourier algebra, let $M_{cb}A(G)$ denote the completely bounded multipliers of $A(G)$, and let $A_{\mathit{Mcb}}(G)$ stand for the closure of $A(G)$ in $M_{cb}A(G)$. We characterize the norm one idempotents in $M_{cb}A(G)$: the indicator function of a set $E \subset G$ is a norm one idempotent in $M_{cb}A(G)$ if and only if $E$ is a coset of an open subgroup of $G$. As applications, we describe the closed ideals of $A_{\mathit{Mcb}}(G)$ with an approximate identity bounded by $1$, and we characterize those $G$ for which $A_{\mathit{Mcb}}(G)$ is $1$-amenable in the sense of B. E. Johnson. (We can even slightly relax the norm bounds.)

Keywords:amenability, bounded approximate identity, $cb$-multiplier norm, Fourier algebra, norm one idempotent
Categories:43A22, 20E05, 43A30, 46J10, 46J40, 46L07, 47L25

6. CMB 2011 (vol 54 pp. 680)

Jiménez-Vargas, A.; Villegas-Vallecillos, Moisés
$2$-Local Isometries on Spaces of Lipschitz Functions
Let $(X,d)$ be a metric space, and let $\mathop{\textrm{Lip}}(X)$ denote the Banach space of all scalar-valued bounded Lipschitz functions $f$ on $X$ endowed with one of the natural norms $ \| f\| =\max \{\| f\| _\infty ,L(f)\}$ or $\|f\| =\| f\| _\infty +L(f), $ where $L(f)$ is the Lipschitz constant of $f.$ It is said that the isometry group of $\mathop{\textrm{Lip}}(X)$ is canonical if every surjective linear isometry of $\mathop{\textrm{Lip}}(X) $ is induced by a surjective isometry of $X$. In this paper we prove that if $X$ is bounded separable and the isometry group of $\mathop{\textrm{Lip}}(X)$ is canonical, then every $2$-local isometry of $\mathop{\textrm{Lip}}(X)$ is a surjective linear isometry. Furthermore, we give a complete description of all $2$-local isometries of $\mathop{\textrm{Lip}}(X)$ when $X$ is bounded.

Keywords:isometry, local isometry, Lipschitz function
Categories:46B04, 46J10, 46E15

7. CMB 2007 (vol 50 pp. 172)

Aron, Richard; Gorkin, Pamela
An Infinite Dimensional Vector Space of Universal Functions for $H^\infty$ of the Ball
We show that there exists a closed infinite dimensional subspace of $H^\infty(B^n)$ such that every function of norm one is universal for some sequence of automorphisms of $B^n$.

Categories:47B38, 47B33, 46J10

8. CMB 2007 (vol 50 pp. 3)

Basener, Richard F.
Higher Dimensional Spaces of Functions on the Spectrum of a Uniform Algebra
In this paper we introduce a nested family of spaces of continuous functions defined on the spectrum of a uniform algebra. The smallest space in the family is the uniform algebra itself. In the ``finite dimensional'' case, from some point on the spaces will be the space of all continuous complex-valued functions on the spectrum. These spaces are defined in terms of solutions to the nonlinear Cauchy--Riemann equations as introduced by the author in 1976, so they are not generally linear spaces of functions. However, these spaces do shed light on the higher dimensional properties of a uniform algebra. In particular, these spaces are directly related to the generalized Shilov boundary of the uniform algebra (as defined by the author and, independently, by Sibony in the early 1970s).

Categories:32A99, 46J10

9. CMB 2003 (vol 46 pp. 632)

Runde, Volker
The Operator Amenability of Uniform Algebras
We prove a quantized version of a theorem by M.~V.~She\u{\i}nberg: A uniform algebra equipped with its canonical, {\it i.e.}, minimal, operator space structure is operator amenable if and only if it is a commutative $C^\ast$-algebra.

Keywords:uniform algebras, amenable Banach algebras, operator amenability, minimal, operator space
Categories:46H20, 46H25, 46J10, 46J40, 47L25

© Canadian Mathematical Society, 2017 :