Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 46H05 ( General theory of topological algebras )

  Expand all        Collapse all Results 1 - 5 of 5

1. CMB Online first

Abtahi, Fatemeh; Azizi, Mohsen; Rejali, Ali
Character amenability of the intersection of Lipschitz algebras
Let $(X,d)$ be a metric space and $J\subseteq [0,\infty)$ be nonempty. We study the structure of the arbitrary intersections of Lipschitz algebras, and define a special Banach subalgebra of $\bigcap_{\gamma\in J}\operatorname{Lip}_\gamma X$, denoted by $\operatorname{ILip}_J X$. Mainly, we investigate $C$-character amenability of $\operatorname{ILip}_J X$, in particular Lipschitz algebras. We address a gap in the proof of a recent result in this field. Then we remove this gap, and obtain a necessary and sufficient condition for $C$-character amenability of $\operatorname{ILip}_J X$, specially Lipschitz algebras, under an additional assumption.

Keywords:amenability, character amenability, Lipschitz algebra, metric space
Categories:46H05, 46J10, 11J83

2. CMB Online first

Haralampidou, Marina; Oudadess, Mohamed; Palacios, Lourdes; Signoret, Carlos
A characterization of $C^{\ast}$-normed algebras via positive functionals
We give a characterization of $C^{\ast}$-normed algebras, among certain involutive normed ones. This is done through the existence of enough specific positive functionals. The same question is also examined in some non normed (topological) algebras.

Keywords:$C^{\ast}$-normed algebra, $C^*$-algebra, (pre-)locally $C^*$-algebra, pre-$C^*$-bornological algebra, positive functional, locally uniformly $A$-convex algebra, perfect locally $m$-convex algebra, $C^*$-(resp. $^*$-) subnormable algebra
Categories:46H05, 46K05

3. CMB 2012 (vol 57 pp. 37)

Dashti, Mahshid; Nasr-Isfahani, Rasoul; Renani, Sima Soltani
Character Amenability of Lipschitz Algebras
Let ${\mathcal X}$ be a locally compact metric space and let ${\mathcal A}$ be any of the Lipschitz algebras ${\operatorname{Lip}_{\alpha}{\mathcal X}}$, ${\operatorname{lip}_{\alpha}{\mathcal X}}$ or ${\operatorname{lip}_{\alpha}^0{\mathcal X}}$. In this paper, we show, as a consequence of rather more general results on Banach algebras, that ${\mathcal A}$ is $C$-character amenable if and only if ${\mathcal X}$ is uniformly discrete.

Keywords:character amenable, character contractible, Lipschitz algebras, spectrum
Categories:43A07, 46H05, 46J10

4. CMB 2009 (vol 53 pp. 51)

Cobos, Fernando; Fernández-Cabrera, Luz M.
On the Relationship Between Interpolation of Banach Algebras and Interpolation of Bilinear Operators
We show that if the general real method $(\cdot ,\cdot )_\Gamma$ preserves the Banach-algebra structure, then a bilinear interpolation theorem holds for $(\cdot ,\cdot )_\Gamma$.

Keywords:real interpolation, bilinear operators, Banach algebras
Categories:46B70, 46M35, 46H05

5. CMB 1997 (vol 40 pp. 129)

Badea, Catalin
Sur les caractères d'une algèbre de Banach
A new proof for the Gleason-Kahane-\.Zelazko theorem concerning the characters of a Banach algebra is given. A theorem due to P\'olya and Saxer is used instead of the Hadamard factorization theorem.

Categories:46H05, 32A15

© Canadian Mathematical Society, 2017 :