76. CMB 2011 (vol 56 pp. 337)
77. CMB 2011 (vol 55 pp. 783)
 Motallebi, M. R.; Saiflu, H.

Products and Direct Sums in Locally Convex Cones
In this paper we define lower, upper, and symmetric completeness and
discuss closure of the sets in product and direct sums. In particular,
we introduce suitable bases for these topologies, which leads us to
investigate completeness of the direct sum and its components. Some
results obtained about $X$topologies and polars of the neighborhoods.
Keywords:product and direct sum, duality, locally convex cone Categories:20K25, 46A30, 46A20 

78. CMB 2011 (vol 56 pp. 400)
79. CMB 2011 (vol 56 pp. 272)
 Cheng, Lixin; Luo, Zhenghua; Zhou, Yu

On Super Weakly Compact Convex Sets and Representation of the Dual of the Normed Semigroup They Generate
In this note, we first give a characterization of super weakly
compact convex sets of a Banach space $X$:
a closed bounded convex set $K\subset X$ is
super weakly compact if and only if there exists a $w^*$ lower
semicontinuous seminorm $p$ with $p\geq\sigma_K\equiv\sup_{x\in
K}\langle\,\cdot\,,x\rangle$ such that $p^2$ is uniformly FrÃ©chet
differentiable on each bounded set of $X^*$. Then we present a
representation theorem for the dual of the semigroup $\textrm{swcc}(X)$
consisting of all the nonempty super weakly compact convex sets of the
space $X$.
Keywords:super weakly compact set, dual of normed semigroup, uniform FrÃ©chet differentiability, representation Categories:20M30, 46B10, 46B20, 46E15, 46J10, 49J50 

80. CMB 2011 (vol 56 pp. 388)
 Mursaleen, M.

Application of Measure of Noncompactness to Infinite Systems of Differential Equations
In this paper we determine the Hausdorff measure of noncompactness on
the sequence space $n(\phi)$ of W. L. C. Sargent.
Further we apply
the technique of measures of noncompactness to the theory of infinite
systems of differential equations in the Banach sequence spaces
$n(\phi)$ and $m(\phi)$. Our aim is to present some existence results
for infinite systems of differential equations formulated with the help
of measures of noncompactness.
Keywords:sequence spaces, BK spaces, measure of noncompactness, infinite system of differential equations Categories:46B15, 46B45, 46B50, 34A34, 34G20 

81. CMB 2011 (vol 56 pp. 434)
 Wnuk, Witold

Some Remarks on the Algebraic Sum of Ideals and Riesz Subspaces
Following ideas used by Drewnowski and Wilansky we prove that if $I$
is an infinite dimensional and
infinite codimensional closed ideal in a complete metrizable locally
solid Riesz space and $I$ does
not contain any order copy of $\mathbb R^{\mathbb N}$ then there exists a
closed, separable, discrete Riesz subspace
$G$ such that the topology induced on $G$ is Lebesgue, $I \cap G =
\{0\}$, and $I + G$ is not closed.
Keywords:locally solid Riesz space, Riesz subspace, ideal, minimal topological vector space, Lebesgue property Categories:46A40, 46B42, 46B45 

82. CMB 2011 (vol 56 pp. 65)
 Ghenciu, Ioana

The Uncomplemented Subspace $\mathbf K(X,Y) $
A vector measure result is used to study the complementation of the
space $K(X,Y)$ of compact operators in the spaces $W(X,Y)$ of weakly
compact operators, $CC(X,Y)$ of completely continuous operators, and
$U(X,Y)$ of unconditionally converging operators.
Results of Kalton and Emmanuele concerning the complementation of
$K(X,Y)$ in $L(X,Y)$ and in $W(X,Y)$ are generalized. The containment
of $c_0$ and $\ell_\infty$ in spaces of operators is also studied.
Keywords:compact operators, weakly compact operators, uncomplemented subspaces of operators Categories:46B20, 46B28 

83. CMB 2011 (vol 55 pp. 821)
 PerezGarcia, C.; Schikhof, W. H.

New Examples of NonArchimedean Banach Spaces and Applications
The study carried out in this paper about some new examples of
Banach spaces, consisting of certain valued fields extensions, is
a typical nonarchimedean feature. We determine whether these
extensions are of countable type, have $t$orthogonal bases, or are
reflexive.
As an application we construct, for a class of base fields, a norm
$\\cdot\$ on $c_0$, equivalent to the canonical supremum norm,
without nonzero vectors that are $\\cdot\$orthogonal and such
that there is a multiplication on $c_0$ making $(c_0,\\cdot\)$
into a valued field.
Keywords:nonarchimedean Banach spaces, valued field extensions, spaces of countable type, orthogonal bases Categories:46S10, 12J25 

84. CMB 2011 (vol 56 pp. 136)
 Munteanu, RaduBogdan

On Constructing Ergodic Hyperfinite Equivalence Relations of NonProduct Type
Product type equivalence relations are hyperfinite measured
equivalence relations, which, up to orbit equivalence, are generated
by product type odometer actions. We give a concrete example of a
hyperfinite equivalence relation of nonproduct type, which is the
tail equivalence on a Bratteli diagram.
In order to show that the equivalence relation constructed is not of
product type we will use a criterion called property A. This
property, introduced by Krieger for nonsingular transformations, is
defined directly for hyperfinite equivalence relations in this paper.
Keywords:property A, hyperfinite equivalence relation, nonproduct type Categories:37A20, 37A35, 46L10 

85. CMB 2011 (vol 55 pp. 673)
 Aizenbud, Avraham; Gourevitch, Dmitry

Multiplicity Free Jacquet Modules
Let $F$ be a nonArchimedean local field or a finite field.
Let $n$ be a natural number and $k$ be $1$ or $2$.
Consider $G:=\operatorname{GL}_{n+k}(F)$ and let
$M:=\operatorname{GL}_n(F) \times \operatorname{GL}_k(F)\lt G$ be a maximal Levi subgroup.
Let $U\lt G$ be the corresponding unipotent subgroup and let $P=MU$ be the corresponding parabolic subgroup.
Let $J:=J_M^G: \mathcal{M}(G) \to \mathcal{M}(M)$ be the Jacquet functor, i.e., the functor of coinvariants with respect to $U$.
In this paper we prove that $J$ is a multiplicity free functor, i.e.,
$\dim \operatorname{Hom}_M(J(\pi),\rho)\leq 1$,
for any irreducible representations $\pi$ of $G$ and $\rho$ of $M$.
We adapt the classical method of Gelfand and Kazhdan, which proves the ``multiplicity free" property of certain representations to prove the ``multiplicity free" property of certain functors.
At the end we discuss whether other Jacquet functors are multiplicity free.
Keywords:multiplicity one, Gelfand pair, invariant distribution, finite group Categories:20G05, 20C30, 20C33, 46F10, 47A67 

86. CMB 2011 (vol 55 pp. 697)
 Borwein, Jonathan M.; Vanderwerff, Jon

Constructions of Uniformly Convex Functions
We give precise conditions under which the composition
of a norm with a convex function yields a
uniformly convex function on a Banach space.
Various applications are given to functions of power type.
The results are dualized to study uniform smoothness
and several examples are provided.
Keywords:convex function, uniformly convex function, uniformly smooth function, power type, Fenchel conjugate, composition, norm Categories:52A41, 46G05, 46N10, 49J50, 90C25 

87. CMB 2011 (vol 55 pp. 767)
 Martini, Horst; Wu, Senlin

On Zindler Curves in Normed Planes
We extend the notion of Zindler curve from the Euclidean plane to
normed planes. A characterization of Zindler curves for general
normed planes is given, and the relation between Zindler curves and
curves of constant areahalving distances in such planes is
discussed.
Keywords:rc length, areahalving distance, Birkhoff orthogonality, convex curve, halving pair, halving distance, isosceles orthogonality, midpoint curve, Minkowski plane, normed plane, Zindler curve Categories:52A21, 52A10, 46C15 

88. CMB 2011 (vol 54 pp. 654)
 Forrest, Brian E.; Runde, Volker

Norm One Idempotent $cb$Multipliers with Applications to the Fourier Algebra in the $cb$Multiplier Norm
For a locally compact group $G$, let $A(G)$ be its Fourier algebra, let $M_{cb}A(G)$ denote the completely
bounded multipliers of $A(G)$, and let $A_{\mathit{Mcb}}(G)$ stand for the closure of $A(G)$ in $M_{cb}A(G)$. We
characterize the norm one idempotents in $M_{cb}A(G)$: the indicator function of a set $E \subset G$ is a norm
one idempotent in $M_{cb}A(G)$ if and only if $E$ is a coset of an open subgroup of $G$. As applications, we
describe the closed ideals of $A_{\mathit{Mcb}}(G)$ with an approximate identity bounded by $1$, and we characterize
those $G$ for which $A_{\mathit{Mcb}}(G)$ is $1$amenable in the sense of B. E. Johnson. (We can even slightly
relax the norm bounds.)
Keywords:amenability, bounded approximate identity, $cb$multiplier norm, Fourier algebra, norm one idempotent Categories:43A22, 20E05, 43A30, 46J10, 46J40, 46L07, 47L25 

89. CMB 2011 (vol 55 pp. 449)
 Bahreini, Manijeh; Bator, Elizabeth; Ghenciu, Ioana

Complemented Subspaces of Linear Bounded Operators
We study the complementation of the space $W(X,Y)$ of weakly compact operators, the space $K(X,Y)$ of compact operators, the space $U(X,Y)$ of unconditionally converging operators, and the space $CC(X,Y)$ of completely continuous operators in the space $L(X,Y)$ of bounded linear operators from $X$ to $Y$.
Feder proved that if $X$ is infinitedimensional and $c_0
\hookrightarrow Y$, then $K(X,Y)$ is uncomplemented in
$L(X,Y)$. Emmanuele and John showed that if $c_0 \hookrightarrow
K(X,Y)$, then $K(X,Y)$ is uncomplemented in $L(X,Y)$.
Bator and Lewis showed that if $X$ is not a Grothendieck space and
$c_0 \hookrightarrow Y$, then $W(X,Y)$ is uncomplemented in
$L(X,Y)$. In this paper, classical results of Kalton and separably
determined operator ideals with property $(*)$ are used to obtain
complementation results that yield these theorems as corollaries.
Keywords:spaces of operators, complemented subspaces, compact operators, weakly compact operators, completely continuous operators Categories:46B20, 46B28 

90. CMB 2011 (vol 55 pp. 548)
 Lewis, Paul; Schulle, Polly

Noncomplemented Spaces of Operators, Vector Measures, and $c_o$
The Banach spaces $L(X, Y)$, $K(X, Y)$, $L_{w^*}(X^*, Y)$, and
$K_{w^*}(X^*, Y)$ are studied to determine when they contain the
classical Banach spaces $c_o$ or $\ell_\infty$. The complementation of
the Banach space $K(X, Y)$ in $L(X, Y)$ is discussed as well as what
impact this complementation has on the embedding of $c_o$ or
$\ell_\infty$ in $K(X, Y)$ or $L(X, Y)$. Results of Kalton, Feder, and
Emmanuele concerning the complementation of $K(X, Y)$ in $L(X, Y)$ are
generalized. Results concerning the complementation of the Banach
space $K_{w^*}(X^*, Y)$ in $L_{w^*}(X^*, Y)$ are also explored as well
as how that complementation affects the embedding of $c_o$ or
$\ell_\infty$ in $K_{w^*}(X^*, Y)$ or $L_{w^*}(X^*, Y)$. The $\ell_p$
spaces for $1 = p < \infty$ are studied to determine when the space of
compact operators from one $\ell_p$ space to another contains
$c_o$. The paper contains a new result which classifies these spaces
of operators. A new result using vector measures is given to
provide more efficient proofs of theorems by Kalton, Feder, Emmanuele,
Emmanuele and John, and Bator and Lewis.
Keywords:spaces of operators, compact operators, complemented subspaces, $w^*w$compact operators Category:46B20 

91. CMB 2011 (vol 54 pp. 385)
 Blackadar, Bruce; Kirchberg, Eberhard

Irreducible Representations of Inner Quasidiagonal $C^*$Algebras
It is shown that a separable $C^*$algebra is inner quasidiagonal if and
only if it has a separating family of quasidiagonal irreducible
representations. As a consequence, a separable $C^*$algebra is a strong
NF algebra if and only if it is nuclear and has a separating family of
quasidiagonal irreducible representations.
We also obtain some permanence properties of the class of inner
quasidiagonal $C^*$algebras.
Category:46L05 

92. CMB 2011 (vol 55 pp. 260)
 Delvaux, L.; Van Daele, A.; Wang, Shuanhong

A Note on the Antipode for Algebraic Quantum Groups
Recently, Beattie, Bulacu ,and Torrecillas proved Radford's formula for the fourth power of the antipode for a coFrobenius Hopf algebra.
In this note, we show that this formula can be proved for any regular multiplier Hopf
algebra with integrals (algebraic quantum groups). This, of course, not only includes the case of a
finitedimensional Hopf algebra, but also that of any
Hopf algebra with integrals (coFrobenius Hopf algebras). Moreover, it turns out that
the proof in this more general situation, in fact, follows in a few lines from wellknown formulas obtained earlier in the
theory of regular multiplier Hopf algebras with integrals.
We discuss these formulas and their importance in this theory. We also mention their generalizations, in particular to the (in a certain sense) more general theory of locally compact quantum groups. Doing so, and also because the proof of the main result itself is very short, the present note becomes largely of an expository nature.
Keywords:multiplier Hopf algebras, algebraic quantum groups, the antipode Categories:16W30, 46L65 

93. CMB 2011 (vol 55 pp. 410)
 Service, Robert

A Ramsey Theorem with an Application to Sequences in Banach Spaces
The notion of a maximally conditional sequence is introduced for sequences in a Banach space. It is then proved using
Ramsey theory that every basic sequence in a Banach space has a subsequence which is either an unconditional
basic sequence or a maximally conditional sequence. An apparently novel, purely combinatorial lemma in the spirit of
Galvin's theorem is used in the proof. An alternative proof
of the dichotomy result for sequences in Banach spaces is
also sketched,
using the GalvinPrikry theorem.
Keywords:Banach spaces, Ramsey theory Categories:46B15, 05D10 

94. CMB 2011 (vol 54 pp. 577)
 Aqzzouz, Belmesnaoui

Erratum: The Duality Problem For The Class of AMCompact Operators On Banach Lattices
It is proved that if a positive operator
$S: E \rightarrow F$ is AMcompact whenever its adjoint
$S': F' \rightarrow E'$ is AMcompact, then either the
norm of F is order continuous or $E'$ is discrete.
This note corrects an error in the proof of Theorem 2.3 of
B. Aqzzouz, R. Nouira, and L. Zraoula, The duality problem for
the class of AMcompact operators on Banach lattices. Canad. Math. Bull.
51(2008).
Categories:46A40, 46B40, 46B42 

95. CMB 2011 (vol 55 pp. 339)
 Loring, Terry A.

From Matrix to Operator Inequalities
We generalize LÃ¶wner's method for proving that matrix monotone
functions are operator monotone. The relation $x\leq y$ on bounded
operators is our model for a definition of $C^{*}$relations
being residually finite dimensional.
Our main result is a metatheorem about theorems involving relations
on bounded operators. If we can show there are residually finite dimensional
relations involved and verify a technical condition, then such a
theorem will follow from its restriction to matrices.
Applications are shown regarding norms of exponentials, the norms
of commutators, and "positive" noncommutative $*$polynomials.
Keywords:$C*$algebras, matrices, bounded operators, relations, operator norm, order, commutator, exponential, residually finite dimensional Categories:46L05, 47B99 

96. CMB 2011 (vol 55 pp. 73)
 Dean, Andrew J.

Classification of Inductive Limits of Outer Actions of ${\mathbb R}$ on Approximate Circle Algebras
In this paper we present a classification,
up to equivariant isomorphism, of $C^*$dynamical systems $(A,{\mathbb R},\alpha )$
arising as inductive limits of directed systems
$\{ (A_n,{\mathbb R},\alpha_n),\varphi_{nm}\}$, where each $A_n$
is a finite direct sum of matrix algebras over the continuous
functions on the unit circle, and the $\alpha_n$s are outer actions
generated by rotation of the spectrum.
Keywords:classification, $C^*$dynamical system Categories:46L57, 46L35 

97. CMB 2011 (vol 54 pp. 726)
 Ostrovskii, M. I.

Auerbach Bases and Minimal Volume Sufficient Enlargements
Let $B_Y$ denote the unit ball of a
normed linear space $Y$. A symmetric, bounded, closed, convex set
$A$ in a finite dimensional normed linear space $X$ is called a
sufficient enlargement for $X$ if, for an arbitrary
isometric embedding of $X$ into a Banach space $Y$, there exists a
linear projection $P\colon Y\to X$ such that $P(B_Y)\subset A$. Each
finite dimensional normed space has a minimalvolume sufficient
enlargement that is a parallelepiped; some spaces have ``exotic''
minimalvolume sufficient enlargements. The main result of the
paper is a characterization of spaces having ``exotic''
minimalvolume sufficient enlargements in terms of Auerbach
bases.
Keywords:Banach space, Auerbach basis, sufficient enlargement Categories:46B07, 52A21, 46B15 

98. CMB 2011 (vol 54 pp. 411)
 Davidson, Kenneth R.; Wright, Alex

Operator Algebras with Unique Preduals
We show that every free semigroup algebra has a (strongly) unique
Banach space predual. We also provide a new simpler proof that a
weak$*$ closed unital operator algebra containing a weak$*$
dense subalgebra of compact operators has a unique Banach space
predual.
Keywords:unique predual, free semigroup algebra, CSL algebra Categories:47L50, 46B04, 47L35 

99. CMB 2011 (vol 54 pp. 593)
 Boersema, Jeffrey L.; Ruiz, Efren

Stability of Real $C^*$Algebras
We will give a characterization of stable real $C^*$algebras
analogous to the one given for complex $C^*$algebras by Hjelmborg
and RÃ¸rdam. Using this result, we will prove
that any real $C^*$algebra satisfying the corona factorization
property is stable if and only if its complexification is stable.
Real $C^*$algebras satisfying the corona factorization property
include AFalgebras and purely infinite $C^*$algebras. We will also
provide an example of a simple unstable $C^*$algebra, the
complexification of which is stable.
Keywords:stability, real C*algebras Category:46L05 

100. CMB 2011 (vol 54 pp. 680)
 JiménezVargas, A.; VillegasVallecillos, Moisés

$2$Local Isometries on Spaces of Lipschitz Functions
Let $(X,d)$ be a metric space, and let $\mathop{\textrm{Lip}}(X)$ denote the Banach
space of all scalarvalued bounded Lipschitz functions $f$ on $X$
endowed with one of the natural norms
$
\ f\ =\max \{\ f\ _\infty ,L(f)\}$ or $\f\ =\
f\ _\infty +L(f),
$
where $L(f)$ is the
Lipschitz constant of $f.$ It is said that the isometry
group of $\mathop{\textrm{Lip}}(X)$ is canonical if every
surjective linear isometry of
$\mathop{\textrm{Lip}}(X) $ is induced by a surjective isometry of $X$.
In this paper
we prove that if $X$ is bounded separable and the isometry group of
$\mathop{\textrm{Lip}}(X)$ is canonical, then every $2$local isometry
of $\mathop{\textrm{Lip}}(X)$ is
a surjective linear isometry. Furthermore, we give a complete
description of all $2$local isometries of $\mathop{\textrm{Lip}}(X)$ when $X$ is
bounded.
Keywords:isometry, local isometry, Lipschitz function Categories:46B04, 46J10, 46E15 
