226. CMB 1997 (vol 40 pp. 133)
 Blackmore, T. D.

Derivations from totally ordered semigroup algebras into their duals
For a wellbehaved measure $\mu$, on a locally compact
totally ordered set $X$, with continuous part $\mu_c$, we make
$L^p(X,\mu_c)$
into a commutative Banach bimodule over the totally ordered
semigroup algebra
$L^p(X,\mu)$, in such a way that the natural surjection from the algebra
to the module is a bounded derivation. This gives rise to bounded
derivations from $L^p(X,\mu)$
into its dual module and in particular shows that if $\mu_c$ is not
identically zero then $L^p(X,\mu)$ is not weakly
amenable. We show that all bounded derivations from $L^1(X,\mu)$
into its dual module arise in this way and also describe all bounded
derivations from
$L^p(X,\mu)$ into its dual for $1
Categories:43A20, 46M20 

227. CMB 1997 (vol 40 pp. 254)
228. CMB 1997 (vol 40 pp. 183)
 Kepert, Andrew G.

The range of group algebra homomorphisms
A characterisation of the range of a homomorphism between two
commutative group algebras is presented which implies, among other
things, that this range is closed. The work relies mainly on the
characterisation of such homomorphisms achieved by P.~J.~Cohen.
Categories:43A22, 22B10, 46J99 

229. CMB 1997 (vol 40 pp. 10)
 Borwein, Jon; Vanderwerff, Jon

Convex functions on Banach spaces not containing $\ell_1$
There is a sizeable class of results precisely
relating boundedness, convergence and differentiability properties
of continuous convex functions on Banach spaces to whether or
not the space contains an isomorphic copy of $\ell_1$. In this
note, we provide constructions showing that the main such
results do not extend to natural broader classes of functions.
Categories:46A55, 46B20, 52A41 
