151. CMB 2005 (vol 48 pp. 69)
 Fabian, M.; Montesinos, V.; Zizler, V.

Biorthogonal Systems in Weakly LindelÃ¶f Spaces
We study countable splitting of Markushevich bases in weakly Lindel\"of
Banach spaces in connection with the geometry of these spaces.
Keywords:Weak compactness, projectional resolutions,, Markushevich bases, Eberlein compacts, Va\v sÃ¡k spaces Categories:46B03, 46B20., 46B26 

152. CMB 2005 (vol 48 pp. 97)
 Katavolos, Aristides; Paulsen, Vern I.

On the Ranges of Bimodule Projections
We develop a symbol calculus for normal bimodule maps over a masa
that is the natural analogue of the Schur product theory. Using
this calculus we are easily able to give a complete description of
the ranges of contractive normal bimodule idempotents that avoids
the theory of J*algebras.
We prove that if $P$ is a normal
bimodule idempotent and $\P\ < 2/\sqrt{3}$ then $P$ is a
contraction. We finish with some attempts at extending the symbol
calculus to nonnormal maps.
Categories:46L15, 47L25 

153. CMB 2005 (vol 48 pp. 50)
 Elliott, George A.; Gong, Guihua; Li, Liangqing

Injectivity of the Connecting Maps in AH Inductive Limit Systems
Let $A$ be the inductive limit of a system
$$A_{1}\xrightarrow{\phi_{1,2}}A_{2}
\xrightarrow{\phi_{2,3}} A_{3}\longrightarrow \cd
$$
with $A_n =
\bigoplus_{i=1}^{t_n} P_{n,i}M_{[n,i]}(C(X_{n,i}))P_{n,i}$, where
$~X_{n,i}$ is a finite simplicial complex, and $P_{n,i}$ is a
projection in $M_{[n,i]}(C(X_{n,i}))$. In this paper, we will
prove that $A$ can be written as another inductive limit
$$B_1\xrightarrow{\psi_{1,2}} B_2
\xrightarrow{\psi_{2,3}} B_3\longrightarrow \cd $$
with $B_n =
\bigoplus_{i=1}^{s_n} Q_{n,i}M_{\{n,i\}}(C(Y_{n,i}))Q_{n,i}$,
where $Y_{n,i}$ is a finite simplicial complex, and $Q_{n,i}$ is a
projection in $M_{\{n,i\}}(C(Y_{n,i}))$, with the extra condition
that all the maps $\psi_{n,n+1}$ are \emph{injective}. (The
result is trivial if one allows the spaces $Y_{n,i}$ to be
arbitrary compact metrizable spaces.) This result is important
for the classification of simple AH algebras (see
\cite{G5,G6,EGL}. The special case that the spaces $X_{n,i}$ are
graphs is due to the third named author \cite{Li1}.
Categories:46L05, 46L35, 19K14 

154. CMB 2004 (vol 47 pp. 540)
 Jain, Pankaj; Jain, Pawan K.; Gupta, Babita

Compactness of HardyType Operators over StarShaped Regions in $\mathbb{R}^N$
We study a compactness property of the operators between weighted
Lebesgue spaces that average a function over certain domains involving
a starshaped region. The cases covered are (i) when the average is
taken over a difference of two dilations of a starshaped region in
$\RR^N$, and (ii) when the average is taken over all dilations of
starshaped regions in $\RR^N$. These cases include, respectively,
the average over annuli and the average over balls centered at origin.
Keywords:Hardy operator, HardySteklov operator, compactness, boundedness, starshaped regions Categories:46E35, 26D10 

155. CMB 2004 (vol 47 pp. 615)
 Randrianantoanina, Narcisse

$C^*$Algebras and Factorization Through Diagonal Operators
Let $\cal A$ be a $C^*$algebra and $E$ be a Banach space with
the RadonNikodym property. We prove that if $j$ is an embedding
of $E$ into an injective Banach space then for every absolutely
summing operator $T:\mathcal{A}\longrightarrow E$, the composition
$j \circ T$ factors through a diagonal operator from $l^{2}$ into
$l^{1}$. In particular, $T$ factors through a Banach space with
the Schur property. Similarly, we prove that for $2
Keywords:$C^*$algebras, summing operators, diagonal operators,, RadonNikodym property Categories:46L50, 47D15 

156. CMB 2004 (vol 47 pp. 553)
 Kerr, David

A Geometric Approach to VoiculescuBrown Entropy
A basic problem in dynamics is to identify systems
with positive entropy, i.e., systems which are ``chaotic.'' While
there is a vast collection of results addressing this issue in
topological dynamics, the phenomenon of positive entropy remains by and
large a mystery within the broader noncommutative domain of $C^*$algebraic
dynamics. To shed some light on the noncommutative situation we propose
a geometric perspective inspired by work of Glasner and Weiss on
topological entropy.
This is a written version of the author's talk
at the Winter 2002 Meeting of the Canadian Mathematical Society
in Ottawa, Ontario.
Categories:46L55, 37B40 

157. CMB 2004 (vol 47 pp. 481)
 Bekjan, Turdebek N.

A New Characterization of Hardy Martingale Cotype Space
We give a new characterization of Hardy martingale cotype
property of complex quasiBanach space by using the existence of a
kind of plurisubharmonic functions. We also characterize the best
constants of Hardy martingale inequalities with values
in the complex quasiBanach space.
Keywords:Hardy martingale, Hardy martingale cotype,, plurisubharmonic function Categories:46B20, 52A07, 60G44 

158. CMB 2004 (vol 47 pp. 445)
 Pirkovskii, A. Yu.

Biprojectivity and Biflatness for Convolution Algebras of Nuclear Operators
For a locally compact group $G$, the convolution product on
the space $\nN(L^p(G))$ of nuclear operators was defined by Neufang
\cite{Neuf_PhD}. We study homological properties of the convolution algebra
$\nN(L^p(G))$ and relate them to some properties of the group $G$,
such as compactness, finiteness, discreteness, and amenability.
Categories:46M10, 46H25, 43A20, 16E65 

159. CMB 2004 (vol 47 pp. 206)
160. CMB 2004 (vol 47 pp. 108)
 Śliwa, Wiesław

On Universal Schauder Bases in NonArchimedean FrÃ©chet Spaces
It is known that any nonarchimedean Fr\'echet space of countable
type is isomorphic to a subspace of $c_0^{\mathbb{N}}$. In this
paper we prove that there exists a nonarchimedean Fr\'echet space
$U$ with a basis $(u_n)$ such that any basis $(x_n)$ in a
nonarchimedean Fr\'echet space $X$ is equivalent to a subbasis
$(u_{k_n})$ of $(u_n)$. Then any nonarchimedean Fr\'echet space
with a basis is isomorphic to a complemented subspace of $U$. In
contrast to this, we show that a nonarchimedean Fr\'echet space
$X$ with a basis $(x_n)$ is isomorphic to a complemented subspace
of $c_0^{\mathbb{N}}$ if and only if $X$ is isomorphic to one of
the following spaces: $c_0$, $c_0 \times \mathbb{K}^{\mathbb{N}}$,
$\mathbb{K}^{\mathbb{N}}$, $c_0^{\mathbb{N}}$. Finally, we prove
that there is no nuclear nonarchimedean Fr\'echet space $H$ with
a basis $(h_n)$ such that any basis $(y_n)$ in a nuclear
nonarchimedean Fr\'echet space $Y$ is equivalent to a subbasis
$(h_{k_n})$ of $(h_n)$.
Keywords:universal bases, complemented subspaces with bases Categories:46S10, 46A35 

161. CMB 2004 (vol 47 pp. 49)
 Lindström, Mikael; Makhmutov, Shamil; Taskinen, Jari

The Essential Norm of a Blochto$Q_p$ Composition Operator
The $Q_p$ spaces coincide with the Bloch space for $p>1$ and are
subspaces of $\BMOA$ for $0
Keywords:Bloch space, little Bloch space, $\BMOA$, $\VMOA$, $Q_p$ spaces,, composition operator, compact operator, essential norm Categories:47B38, 47B10, 46E40, 46E15 

162. CMB 2003 (vol 46 pp. 588)
 Monteiro, Martha Salerno

Weakly Stable Relations and Inductive Limits of $C^\ast$algebras
We show that if $\mathcal{A}$ is a class of $C^\ast$algebras for which
the set of formal relations $\mathcal{R}$ is weakly stable, then $\mathcal{R}$
is weakly stable for the class $\mathcal{B}$ that contains $\mathcal{A}$ and
all the inductive limits that can be constructed with the $C^\ast$algebras in
$\mathcal{A}$.
A set of formal relations $\mathcal{R}$ is said to be {\it weakly stable\/} for
a class $\mathcal{C}$ of $C^\ast$algebras if, in any $C^\ast$algebra $A\in
\mathcal{C}$, close to an approximate representation of the set $\mathcal{R}$
in $A$ there is an exact representation of $\mathcal{R}$ in $A$.
Category:46L05 

163. CMB 2003 (vol 46 pp. 632)
 Runde, Volker

The Operator Amenability of Uniform Algebras
We prove a quantized version of a theorem by M.~V.~She\u{\i}nberg:
A uniform algebra equipped with its canonical, {\it i.e.}, minimal,
operator space structure is operator amenable if and only if it is
a commutative $C^\ast$algebra.
Keywords:uniform algebras, amenable Banach algebras, operator amenability, minimal, operator space Categories:46H20, 46H25, 46J10, 46J40, 47L25 

164. CMB 2003 (vol 46 pp. 575)
 Marshall, M.

Optimization of Polynomial Functions
This paper develops a refinement of Lasserre's algorithm for
optimizing a polynomial on a basic closed semialgebraic set via
semidefinite programming and addresses an open question concerning the
duality gap. It is shown that, under certain natural stability
assumptions, the problem of optimization on a basic closed set reduces
to the compact case.
Categories:14P10, 46L05, 90C22 

165. CMB 2003 (vol 46 pp. 538)
166. CMB 2003 (vol 46 pp. 509)
 Benson, David J.; Kumjian, Alex; Phillips, N. Christopher

Symmetries of Kirchberg Algebras
Let $G_0$ and $G_1$ be countable abelian groups. Let $\gamma_i$ be an
automorphism of $G_i$ of order two. Then there exists a unital
Kirchberg algebra $A$ satisfying the Universal Coefficient Theorem and
with $[1_A] = 0$ in $K_0 (A)$, and an automorphism $\alpha \in
\Aut(A)$ of order two, such that $K_0 (A) \cong G_0$, such that $K_1
(A) \cong G_1$, and such that $\alpha_* \colon K_i (A) \to K_i (A)$ is
$\gamma_i$. As a consequence, we prove that every
$\mathbb{Z}_2$graded countable module over the representation ring $R
(\mathbb{Z}_2)$ of $\mathbb{Z}_2$ is isomorphic to the equivariant
$K$theory $K^{\mathbb{Z}_2} (A)$ for some action of $\mathbb{Z}_2$ on
a unital Kirchberg algebra~$A$.
Along the way, we prove that every not necessarily finitely generated
$\mathbb{Z} [\mathbb{Z}_2]$module which is free as a
$\mathbb{Z}$module has a direct sum decomposition with only three
kinds of summands, namely $\mathbb{Z} [\mathbb{Z}_2]$ itself and
$\mathbb{Z}$ on which the nontrivial element of $\mathbb{Z}_2$ acts
either trivially or by multiplication by $1$.
Categories:20C10, 46L55, 19K99, 19L47, 46L40, 46L80 

167. CMB 2003 (vol 46 pp. 481)
 Bachir, M.; Lancien, G.

On the Composition of Differentiable Functions
We prove that a Banach space $X$ has the Schur property if and only if every
$X$valued weakly differentiable function is Fr\'echet differentiable. We
give a general result on the Fr\'echet differentiability of $f\circ T$, where
$f$ is a Lipschitz function and $T$ is a compact linear operator. Finally
we study, using in particular a smooth variational principle, the
differentiability of the semi norm $\Vert \ \Vert_{\lip}$ on various spaces
of Lipschitz functions.
Categories:58C20, 46B20 

168. CMB 2003 (vol 46 pp. 365)
169. CMB 2003 (vol 46 pp. 457)
 Toms, Andrew

Strongly Perforated $K_{0}$Groups of Simple $C^{*}$Algebras
In the sequel we construct simple, unital, separable, stable, amenable
$C^{*}$algebras for which the ordered $K_{0}$group is strongly
perforated and group isomorphic to $Z$. The particular order structures
to be constructed will be described in detail below, and all
known results of this type will be generalised.
Categories:46, 19 

170. CMB 2003 (vol 46 pp. 441)
171. CMB 2003 (vol 46 pp. 419)
172. CMB 2003 (vol 46 pp. 388)
 Lin, Huaxin

Tracially Quasidiagonal Extensions
It is known that a unital simple $C^*$algebra $A$ with tracial
topological rank zero has real rank zero. We show in this note that,
in general, there are unital $C^*$algebras with tracial topological
rank zero that have real rank other than zero.
Let $0\to J\to E\to A\to 0$ be a short exact sequence of
$C^*$algebras. Suppose that $J$ and $A$ have tracial topological
rank zero. It is known that $E$ has tracial topological rank zero
as a $C^*$algebra if and only if $E$ is tracially quasidiagonal
as an extension. We present an example of a tracially
quasidiagonal extension which is not quasidiagonal.
Keywords:tracially quasidiagonal extensions, tracial rank Categories:46L05, 46L80 

173. CMB 2003 (vol 46 pp. 164)
 Dean, Andrew J.

Classification of $\AF$ Flows
An $\AF$ flow is a oneparameter automorphism group of an $\AF$
$C^*$algebra $A$ such that there exists an increasing sequence of
invariant finite dimensional sub$C^*$algebras whose union is dense in
$A$. In this paper, a classification of $C^*$dynamical systems of
this form up to equivariant isomorphism is presented. Two pictures
of the actions are given, one in terms of a modified Bratteli
diagram/pathspace construction, and one in terms of a modified
$K_0$ functor.
Categories:46L57, 46L35 

174. CMB 2003 (vol 46 pp. 242)
 Litvak, A. E.; Milman, V. D.

Euclidean Sections of Direct Sums of Normed Spaces
We study the dimension of ``random'' Euclidean sections of direct sums of
normed spaces. We compare the obtained results with results from \cite{LMS},
to show that for the direct sums the standard randomness with respect to the
Haar measure on Grassmanian coincides with a much ``weaker'' randomness of
``diagonal'' subspaces (Corollary~\ref{sle} and explanation after). We also
add some relative information on ``phase transition''.
Keywords:Dvoretzky theorem, ``random'' Euclidean section, phase transition in asymptotic convexity Categories:46B07, 46B09, 46B20, 52A21 

175. CMB 2003 (vol 46 pp. 161)