Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 46 ( Functional analysis )

  Expand all        Collapse all Results 76 - 100 of 223

76. CMB 2011 (vol 56 pp. 65)

Ghenciu, Ioana
The Uncomplemented Subspace $\mathbf K(X,Y) $
A vector measure result is used to study the complementation of the space $K(X,Y)$ of compact operators in the spaces $W(X,Y)$ of weakly compact operators, $CC(X,Y)$ of completely continuous operators, and $U(X,Y)$ of unconditionally converging operators. Results of Kalton and Emmanuele concerning the complementation of $K(X,Y)$ in $L(X,Y)$ and in $W(X,Y)$ are generalized. The containment of $c_0$ and $\ell_\infty$ in spaces of operators is also studied.

Keywords:compact operators, weakly compact operators, uncomplemented subspaces of operators
Categories:46B20, 46B28

77. CMB 2011 (vol 55 pp. 673)

Aizenbud, Avraham; Gourevitch, Dmitry
Multiplicity Free Jacquet Modules
Let $F$ be a non-Archimedean local field or a finite field. Let $n$ be a natural number and $k$ be $1$ or $2$. Consider $G:=\operatorname{GL}_{n+k}(F)$ and let $M:=\operatorname{GL}_n(F) \times \operatorname{GL}_k(F)\lt G$ be a maximal Levi subgroup. Let $U\lt G$ be the corresponding unipotent subgroup and let $P=MU$ be the corresponding parabolic subgroup. Let $J:=J_M^G: \mathcal{M}(G) \to \mathcal{M}(M)$ be the Jacquet functor, i.e., the functor of coinvariants with respect to $U$. In this paper we prove that $J$ is a multiplicity free functor, i.e., $\dim \operatorname{Hom}_M(J(\pi),\rho)\leq 1$, for any irreducible representations $\pi$ of $G$ and $\rho$ of $M$. We adapt the classical method of Gelfand and Kazhdan, which proves the ``multiplicity free" property of certain representations to prove the ``multiplicity free" property of certain functors. At the end we discuss whether other Jacquet functors are multiplicity free.

Keywords:multiplicity one, Gelfand pair, invariant distribution, finite group
Categories:20G05, 20C30, 20C33, 46F10, 47A67

78. CMB 2011 (vol 55 pp. 821)

Perez-Garcia, C.; Schikhof, W. H.
New Examples of Non-Archimedean Banach Spaces and Applications
The study carried out in this paper about some new examples of Banach spaces, consisting of certain valued fields extensions, is a typical non-archimedean feature. We determine whether these extensions are of countable type, have $t$-orthogonal bases, or are reflexive. As an application we construct, for a class of base fields, a norm $\|\cdot\|$ on $c_0$, equivalent to the canonical supremum norm, without non-zero vectors that are $\|\cdot\|$-orthogonal and such that there is a multiplication on $c_0$ making $(c_0,\|\cdot\|)$ into a valued field.

Keywords:non-archimedean Banach spaces, valued field extensions, spaces of countable type, orthogonal bases
Categories:46S10, 12J25

79. CMB 2011 (vol 56 pp. 136)

Munteanu, Radu-Bogdan
On Constructing Ergodic Hyperfinite Equivalence Relations of Non-Product Type
Product type equivalence relations are hyperfinite measured equivalence relations, which, up to orbit equivalence, are generated by product type odometer actions. We give a concrete example of a hyperfinite equivalence relation of non-product type, which is the tail equivalence on a Bratteli diagram. In order to show that the equivalence relation constructed is not of product type we will use a criterion called property A. This property, introduced by Krieger for non-singular transformations, is defined directly for hyperfinite equivalence relations in this paper.

Keywords:property A, hyperfinite equivalence relation, non-product type
Categories:37A20, 37A35, 46L10

80. CMB 2011 (vol 55 pp. 697)

Borwein, Jonathan M.; Vanderwerff, Jon
Constructions of Uniformly Convex Functions
We give precise conditions under which the composition of a norm with a convex function yields a uniformly convex function on a Banach space. Various applications are given to functions of power type. The results are dualized to study uniform smoothness and several examples are provided.

Keywords:convex function, uniformly convex function, uniformly smooth function, power type, Fenchel conjugate, composition, norm
Categories:52A41, 46G05, 46N10, 49J50, 90C25

81. CMB 2011 (vol 55 pp. 767)

Martini, Horst; Wu, Senlin
On Zindler Curves in Normed Planes
We extend the notion of Zindler curve from the Euclidean plane to normed planes. A characterization of Zindler curves for general normed planes is given, and the relation between Zindler curves and curves of constant area-halving distances in such planes is discussed.

Keywords:rc length, area-halving distance, Birkhoff orthogonality, convex curve, halving pair, halving distance, isosceles orthogonality, midpoint curve, Minkowski plane, normed plane, Zindler curve
Categories:52A21, 52A10, 46C15

82. CMB 2011 (vol 54 pp. 654)

Forrest, Brian E.; Runde, Volker
Norm One Idempotent $cb$-Multipliers with Applications to the Fourier Algebra in the $cb$-Multiplier Norm
For a locally compact group $G$, let $A(G)$ be its Fourier algebra, let $M_{cb}A(G)$ denote the completely bounded multipliers of $A(G)$, and let $A_{\mathit{Mcb}}(G)$ stand for the closure of $A(G)$ in $M_{cb}A(G)$. We characterize the norm one idempotents in $M_{cb}A(G)$: the indicator function of a set $E \subset G$ is a norm one idempotent in $M_{cb}A(G)$ if and only if $E$ is a coset of an open subgroup of $G$. As applications, we describe the closed ideals of $A_{\mathit{Mcb}}(G)$ with an approximate identity bounded by $1$, and we characterize those $G$ for which $A_{\mathit{Mcb}}(G)$ is $1$-amenable in the sense of B. E. Johnson. (We can even slightly relax the norm bounds.)

Keywords:amenability, bounded approximate identity, $cb$-multiplier norm, Fourier algebra, norm one idempotent
Categories:43A22, 20E05, 43A30, 46J10, 46J40, 46L07, 47L25

83. CMB 2011 (vol 55 pp. 449)

Bahreini, Manijeh; Bator, Elizabeth; Ghenciu, Ioana
Complemented Subspaces of Linear Bounded Operators
We study the complementation of the space $W(X,Y)$ of weakly compact operators, the space $K(X,Y)$ of compact operators, the space $U(X,Y)$ of unconditionally converging operators, and the space $CC(X,Y)$ of completely continuous operators in the space $L(X,Y)$ of bounded linear operators from $X$ to $Y$. Feder proved that if $X$ is infinite-dimensional and $c_0 \hookrightarrow Y$, then $K(X,Y)$ is uncomplemented in $L(X,Y)$. Emmanuele and John showed that if $c_0 \hookrightarrow K(X,Y)$, then $K(X,Y)$ is uncomplemented in $L(X,Y)$. Bator and Lewis showed that if $X$ is not a Grothendieck space and $c_0 \hookrightarrow Y$, then $W(X,Y)$ is uncomplemented in $L(X,Y)$. In this paper, classical results of Kalton and separably determined operator ideals with property $(*)$ are used to obtain complementation results that yield these theorems as corollaries.

Keywords:spaces of operators, complemented subspaces, compact operators, weakly compact operators, completely continuous operators
Categories:46B20, 46B28

84. CMB 2011 (vol 55 pp. 548)

Lewis, Paul; Schulle, Polly
Non-complemented Spaces of Operators, Vector Measures, and $c_o$
The Banach spaces $L(X, Y)$, $K(X, Y)$, $L_{w^*}(X^*, Y)$, and $K_{w^*}(X^*, Y)$ are studied to determine when they contain the classical Banach spaces $c_o$ or $\ell_\infty$. The complementation of the Banach space $K(X, Y)$ in $L(X, Y)$ is discussed as well as what impact this complementation has on the embedding of $c_o$ or $\ell_\infty$ in $K(X, Y)$ or $L(X, Y)$. Results of Kalton, Feder, and Emmanuele concerning the complementation of $K(X, Y)$ in $L(X, Y)$ are generalized. Results concerning the complementation of the Banach space $K_{w^*}(X^*, Y)$ in $L_{w^*}(X^*, Y)$ are also explored as well as how that complementation affects the embedding of $c_o$ or $\ell_\infty$ in $K_{w^*}(X^*, Y)$ or $L_{w^*}(X^*, Y)$. The $\ell_p$ spaces for $1 = p < \infty$ are studied to determine when the space of compact operators from one $\ell_p$ space to another contains $c_o$. The paper contains a new result which classifies these spaces of operators. A new result using vector measures is given to provide more efficient proofs of theorems by Kalton, Feder, Emmanuele, Emmanuele and John, and Bator and Lewis.

Keywords:spaces of operators, compact operators, complemented subspaces, $w^*-w$-compact operators

85. CMB 2011 (vol 54 pp. 385)

Blackadar, Bruce; Kirchberg, Eberhard
Irreducible Representations of Inner Quasidiagonal $C^*$-Algebras
It is shown that a separable $C^*$-algebra is inner quasidiagonal if and only if it has a separating family of quasidiagonal irreducible representations. As a consequence, a separable $C^*$-algebra is a strong NF algebra if and only if it is nuclear and has a separating family of quasidiagonal irreducible representations. We also obtain some permanence properties of the class of inner quasidiagonal $C^*$-algebras.


86. CMB 2011 (vol 55 pp. 260)

Delvaux, L.; Van Daele, A.; Wang, Shuanhong
A Note on the Antipode for Algebraic Quantum Groups
Recently, Beattie, Bulacu ,and Torrecillas proved Radford's formula for the fourth power of the antipode for a co-Frobenius Hopf algebra. In this note, we show that this formula can be proved for any regular multiplier Hopf algebra with integrals (algebraic quantum groups). This, of course, not only includes the case of a finite-dimensional Hopf algebra, but also that of any Hopf algebra with integrals (co-Frobenius Hopf algebras). Moreover, it turns out that the proof in this more general situation, in fact, follows in a few lines from well-known formulas obtained earlier in the theory of regular multiplier Hopf algebras with integrals. We discuss these formulas and their importance in this theory. We also mention their generalizations, in particular to the (in a certain sense) more general theory of locally compact quantum groups. Doing so, and also because the proof of the main result itself is very short, the present note becomes largely of an expository nature.

Keywords:multiplier Hopf algebras, algebraic quantum groups, the antipode
Categories:16W30, 46L65

87. CMB 2011 (vol 55 pp. 410)

Service, Robert
A Ramsey Theorem with an Application to Sequences in Banach Spaces
The notion of a maximally conditional sequence is introduced for sequences in a Banach space. It is then proved using Ramsey theory that every basic sequence in a Banach space has a subsequence which is either an unconditional basic sequence or a maximally conditional sequence. An apparently novel, purely combinatorial lemma in the spirit of Galvin's theorem is used in the proof. An alternative proof of the dichotomy result for sequences in Banach spaces is also sketched, using the Galvin-Prikry theorem.

Keywords:Banach spaces, Ramsey theory
Categories:46B15, 05D10

88. CMB 2011 (vol 54 pp. 577)

Aqzzouz, Belmesnaoui
Erratum: The Duality Problem For The Class of AM-Compact Operators On Banach Lattices
It is proved that if a positive operator $S: E \rightarrow F$ is AM-compact whenever its adjoint $S': F' \rightarrow E'$ is AM-compact, then either the norm of F is order continuous or $E'$ is discrete. This note corrects an error in the proof of Theorem 2.3 of B. Aqzzouz, R. Nouira, and L. Zraoula, The duality problem for the class of AM-compact operators on Banach lattices. Canad. Math. Bull. 51(2008).

Categories:46A40, 46B40, 46B42

89. CMB 2011 (vol 55 pp. 339)

Loring, Terry A.
From Matrix to Operator Inequalities
We generalize Löwner's method for proving that matrix monotone functions are operator monotone. The relation $x\leq y$ on bounded operators is our model for a definition of $C^{*}$-relations being residually finite dimensional. Our main result is a meta-theorem about theorems involving relations on bounded operators. If we can show there are residually finite dimensional relations involved and verify a technical condition, then such a theorem will follow from its restriction to matrices. Applications are shown regarding norms of exponentials, the norms of commutators, and "positive" noncommutative $*$-polynomials.

Keywords:$C*$-algebras, matrices, bounded operators, relations, operator norm, order, commutator, exponential, residually finite dimensional
Categories:46L05, 47B99

90. CMB 2011 (vol 55 pp. 73)

Dean, Andrew J.
Classification of Inductive Limits of Outer Actions of ${\mathbb R}$ on Approximate Circle Algebras
In this paper we present a classification, up to equivariant isomorphism, of $C^*$-dynamical systems $(A,{\mathbb R},\alpha )$ arising as inductive limits of directed systems $\{ (A_n,{\mathbb R},\alpha_n),\varphi_{nm}\}$, where each $A_n$ is a finite direct sum of matrix algebras over the continuous functions on the unit circle, and the $\alpha_n$s are outer actions generated by rotation of the spectrum.

Keywords:classification, $C^*$-dynamical system
Categories:46L57, 46L35

91. CMB 2011 (vol 54 pp. 726)

Ostrovskii, M. I.
Auerbach Bases and Minimal Volume Sufficient Enlargements
Let $B_Y$ denote the unit ball of a normed linear space $Y$. A symmetric, bounded, closed, convex set $A$ in a finite dimensional normed linear space $X$ is called a sufficient enlargement for $X$ if, for an arbitrary isometric embedding of $X$ into a Banach space $Y$, there exists a linear projection $P\colon Y\to X$ such that $P(B_Y)\subset A$. Each finite dimensional normed space has a minimal-volume sufficient enlargement that is a parallelepiped; some spaces have ``exotic'' minimal-volume sufficient enlargements. The main result of the paper is a characterization of spaces having ``exotic'' minimal-volume sufficient enlargements in terms of Auerbach bases.

Keywords:Banach space, Auerbach basis, sufficient enlargement
Categories:46B07, 52A21, 46B15

92. CMB 2011 (vol 54 pp. 411)

Davidson, Kenneth R.; Wright, Alex
Operator Algebras with Unique Preduals
We show that every free semigroup algebra has a (strongly) unique Banach space predual. We also provide a new simpler proof that a weak-$*$ closed unital operator algebra containing a weak-$*$ dense subalgebra of compact operators has a unique Banach space predual.

Keywords:unique predual, free semigroup algebra, CSL algebra
Categories:47L50, 46B04, 47L35

93. CMB 2011 (vol 54 pp. 593)

Boersema, Jeffrey L.; Ruiz, Efren
Stability of Real $C^*$-Algebras
We will give a characterization of stable real $C^*$-algebras analogous to the one given for complex $C^*$-algebras by Hjelmborg and Rørdam. Using this result, we will prove that any real $C^*$-algebra satisfying the corona factorization property is stable if and only if its complexification is stable. Real $C^*$-algebras satisfying the corona factorization property include AF-algebras and purely infinite $C^*$-algebras. We will also provide an example of a simple unstable $C^*$-algebra, the complexification of which is stable.

Keywords:stability, real C*-algebras

94. CMB 2011 (vol 54 pp. 680)

Jiménez-Vargas, A.; Villegas-Vallecillos, Moisés
$2$-Local Isometries on Spaces of Lipschitz Functions
Let $(X,d)$ be a metric space, and let $\mathop{\textrm{Lip}}(X)$ denote the Banach space of all scalar-valued bounded Lipschitz functions $f$ on $X$ endowed with one of the natural norms $ \| f\| =\max \{\| f\| _\infty ,L(f)\}$ or $\|f\| =\| f\| _\infty +L(f), $ where $L(f)$ is the Lipschitz constant of $f.$ It is said that the isometry group of $\mathop{\textrm{Lip}}(X)$ is canonical if every surjective linear isometry of $\mathop{\textrm{Lip}}(X) $ is induced by a surjective isometry of $X$. In this paper we prove that if $X$ is bounded separable and the isometry group of $\mathop{\textrm{Lip}}(X)$ is canonical, then every $2$-local isometry of $\mathop{\textrm{Lip}}(X)$ is a surjective linear isometry. Furthermore, we give a complete description of all $2$-local isometries of $\mathop{\textrm{Lip}}(X)$ when $X$ is bounded.

Keywords:isometry, local isometry, Lipschitz function
Categories:46B04, 46J10, 46E15

95. CMB 2011 (vol 54 pp. 338)

Nakazi, Takahiko
Szegö's Theorem and Uniform Algebras
We study Szegö's theorem for a uniform algebra. In particular, we do it for the disc algebra or the bidisc algebra.

Keywords:Szegö's theorem, uniform algebras, disc algebra, weighted Bergman space
Categories:32A35, 46J15, 60G25

96. CMB 2011 (vol 54 pp. 347)

Potapov, D.; Sukochev, F.
The Haar System in the Preduals of Hyperfinite Factors
We shall present examples of Schauder bases in the preduals to the hyperfinite factors of types~$\hbox{II}_1$, $\hbox{II}_\infty$, $\hbox{III}_\lambda$, $0 < \lambda \leq 1$. In the semifinite (respectively, purely infinite) setting, these systems form Schauder bases in any associated separable symmetric space of measurable operators (respectively, in any non-commutative $L^p$-space).


97. CMB 2011 (vol 54 pp. 302)

Kurka, Ondřej
Structure of the Set of Norm-attaining Functionals on Strictly Convex Spaces
Let $X$ be a separable non-reflexive Banach space. We show that there is no Borel class which contains the set of norm-attaining functionals for every strictly convex renorming of $X$.

Keywords:separable non-reflexive space, set of norm-attaining functionals, strictly convex norm, Borel class
Categories:46B20, 54H05, 46B10

98. CMB 2010 (vol 54 pp. 82)

Emerson, Heath
Lefschetz Numbers for $C^*$-Algebras
Using Poincar\'e duality, we obtain a formula of Lefschetz type that computes the Lefschetz number of an endomorphism of a separable nuclear $C^*$-algebra satisfying Poincar\'e duality and the Kunneth theorem. (The Lefschetz number of an endomorphism is the graded trace of the induced map on $\textrm{K}$-theory tensored with $\mathbb{C}$, as in the classical case.) We then examine endomorphisms of Cuntz--Krieger algebras $O_A$. An endomorphism has an invariant, which is a permutation of an infinite set, and the contracting and expanding behavior of this permutation describes the Lefschetz number of the endomorphism. Using this description, we derive a closed polynomial formula for the Lefschetz number depending on the matrix $A$ and the presentation of the endomorphism.

Categories:19K35, 46L80

99. CMB 2010 (vol 54 pp. 141)

Kim, Sang Og; Park, Choonkil
Linear Maps on $C^*$-Algebras Preserving the Set of Operators that are Invertible in $\mathcal{A}/\mathcal{I}$
For $C^*$-algebras $\mathcal{A}$ of real rank zero, we describe linear maps $\phi$ on $\mathcal{A}$ that are surjective up to ideals $\mathcal{I}$, and $\pi(A)$ is invertible in $\mathcal{A}/\mathcal{I}$ if and only if $\pi(\phi(A))$ is invertible in $\mathcal{A}/\mathcal{I}$, where $A\in\mathcal{A}$ and $\pi:\mathcal{A}\to\mathcal{A}/\mathcal{I}$ is the quotient map. We also consider similar linear maps preserving zero products on the Calkin algebra.

Keywords:preservers, Jordan automorphisms, invertible operators, zero products
Categories:47B48, 47A10, 46H10

100. CMB 2010 (vol 54 pp. 68)

Eilers, Søren; Restorff, Gunnar; Ruiz, Efren
Non-splitting in Kirchberg's Ideal-related $KK$-Theory
A. Bonkat obtained a universal coefficient theorem in the setting of Kirchberg's ideal-related $KK$-theory in the fundamental case of a $C^*$-algebra with one specified ideal. The universal coefficient sequence was shown to split, unnaturally, under certain conditions. Employing certain $K$-theoretical information derivable from the given operator algebras using a method introduced here, we shall demonstrate that Bonkat's UCT does not split in general. Related methods lead to information on the complexity of the $K$-theory which must be used to classify $*$-isomorphisms for purely infinite $C^*$-algebras with one non-trivial ideal.

Keywords:KK-theory, UCT
   1 ... 3 4 5 ... 9    

© Canadian Mathematical Society, 2017 :