CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 43A20 ( $L^1$-algebras on groups, semigroups, etc. )

  Expand all        Collapse all Results 1 - 8 of 8

1. CMB 2017 (vol 60 pp. 449)

Alaghmandan, Mahmood; Crann, Jason
Character Density in Central Subalgebras of Compact Quantum Groups
We investigate quantum group generalizations of various density results from Fourier analysis on compact groups. In particular, we establish the density of characters in the space of fixed points of the conjugation action on $L^2(\mathbb{G})$, and use this result to show the weak* density and norm density of characters in $ZL^\infty(\mathbb{G})$ and $ZC(\mathbb{G})$, respectively. As a corollary, we partially answer an open question of Woronowicz. At the level of $L^1(\mathbb{G})$, we show that the center $\mathcal{Z}(L^1(\mathbb{G}))$ is precisely the closed linear span of the quantum characters for a large class of compact quantum groups, including arbitrary compact Kac algebras. In the latter setting, we show, in addition, that $\mathcal{Z}(L^1(\mathbb{G}))$ is a completely complemented $\mathcal{Z}(L^1(\mathbb{G}))$-submodule of $L^1(\mathbb{G})$.

Keywords:compact quantum group, irreducible character
Categories:43A20, 43A40, 46J40

2. CMB 2014 (vol 58 pp. 3)

Alaghmandan, Mahmood
Approximate Amenability of Segal Algebras II
We prove that every proper Segal algebra of a SIN group is not approximately amenable.

Keywords:Segal algebras, approximate amenability, SIN groups, commutative Banach algebras
Categories:46H20, 43A20

3. CMB 2013 (vol 57 pp. 449)

Alaghmandan, Mahmood; Choi, Yemon; Samei, Ebrahim
ZL-amenability Constants of Finite Groups with Two Character Degrees
We calculate the exact amenability constant of the centre of $\ell^1(G)$ when $G$ is one of the following classes of finite group: dihedral; extraspecial; or Frobenius with abelian complement and kernel. This is done using a formula which applies to all finite groups with two character degrees. In passing, we answer in the negative a question raised in work of the third author with Azimifard and Spronk (J. Funct. Anal. 2009).

Keywords:center of group algebras, characters, character degrees, amenability constant, Frobenius group, extraspecial groups
Categories:43A20, 20C15

4. CMB 2010 (vol 53 pp. 447)

Choi, Yemon
Injective Convolution Operators on l(Γ) are Surjective
Let $\Gamma$ be a discrete group and let $f \in \ell^{1}(\Gamma)$. We observe that if the natural convolution operator $\rho_f: \ell^{\infty}(\Gamma)\to \ell^{\infty}(\Gamma)$ is injective, then $f$ is invertible in $\ell^{1}(\Gamma)$. Our proof simplifies and generalizes calculations in a preprint of Deninger and Schmidt by appealing to the direct finiteness of the algebra $\ell^{1}(\Gamma)$. We give simple examples to show that in general one cannot replace $\ell^{\infty}$ with $\ell^{p}$, $1\leq p< \infty$, nor with $L^{\infty}(G)$ for nondiscrete $G$. Finally, we consider the problem of extending the main result to the case of weighted convolution operators on $\Gamma$, and give some partial results.

Categories:43A20, 46L05, 43A22

5. CMB 2008 (vol 51 pp. 60)

Janzen, David
F{\o}lner Nets for Semidirect Products of Amenable Groups
For unimodular semidirect products of locally compact amenable groups $N$ and $H$, we show that one can always construct a F{\o}lner net of the form $(A_\alpha \times B_\beta)$ for $G$, where $(A_\alpha)$ is a strong form of F{\o}lner net for $N$ and $(B_\beta)$ is any F{\o}lner net for $H$. Applications to the Heisenberg and Euclidean motion groups are provided.

Categories:22D05, 43A07, 22D15, 43A20

6. CMB 2007 (vol 50 pp. 56)

Gourdeau, F.; Pourabbas, A.; White, M. C.
Simplicial Cohomology of Some Semigroup Algebras
In this paper, we investigate the higher simplicial cohomology groups of the convolution algebra $\ell^1(S)$ for various semigroups $S$. The classes of semigroups considered are semilattices, Clifford semigroups, regular Rees semigroups and the additive semigroups of integers greater than $a$ for some integer $a$. Our results are of two types: in some cases, we show that some cohomology groups are $0$, while in some other cases, we show that some cohomology groups are Banach spaces.

Keywords:simplicial cohomology, semigroup algebra
Category:43A20

7. CMB 2004 (vol 47 pp. 445)

Pirkovskii, A. Yu.
Biprojectivity and Biflatness for Convolution Algebras of Nuclear Operators
For a locally compact group $G$, the convolution product on the space $\nN(L^p(G))$ of nuclear operators was defined by Neufang \cite{Neuf_PhD}. We study homological properties of the convolution algebra $\nN(L^p(G))$ and relate them to some properties of the group $G$, such as compactness, finiteness, discreteness, and amenability.

Categories:46M10, 46H25, 43A20, 16E65

8. CMB 1997 (vol 40 pp. 133)

Blackmore, T. D.
Derivations from totally ordered semigroup algebras into their duals
For a well-behaved measure $\mu$, on a locally compact totally ordered set $X$, with continuous part $\mu_c$, we make $L^p(X,\mu_c)$ into a commutative Banach bimodule over the totally ordered semigroup algebra $L^p(X,\mu)$, in such a way that the natural surjection from the algebra to the module is a bounded derivation. This gives rise to bounded derivations from $L^p(X,\mu)$ into its dual module and in particular shows that if $\mu_c$ is not identically zero then $L^p(X,\mu)$ is not weakly amenable. We show that all bounded derivations from $L^1(X,\mu)$ into its dual module arise in this way and also describe all bounded derivations from $L^p(X,\mu)$ into its dual for $1
Categories:43A20, 46M20

© Canadian Mathematical Society, 2017 : https://cms.math.ca/