1. CMB 2017 (vol 60 pp. 402)
 Shravan Kumar, N.

Invariant Means on a Class of von Neumann Algebras Related to Ultraspherical Hypergroups II
Let $K$ be an ultraspherical hypergroup associated to a locally
compact group $G$ and a spherical projector $\pi$ and let $VN(K)$
denote the dual of the Fourier algebra $A(K)$ corresponding to
$K.$ In this note, we show that the set of invariant means on
$VN(K)$ is singleton if and only if $K$ is discrete. Here $K$
need not be second countable. We also study invariant means on
the dual of the Fourier algebra $A_0(K),$ the closure of $A(K)$
in the $cb$multiplier norm. Finally, we consider generalized
translations and generalized invariant means.
Keywords:ultraspherical hypergroup, Fourier algebra, FourierStieltjes algebra, invariant mean, generalized translation, generalized invariant mean Categories:43A62, 46J10, 43A30, 20N20 

2. CMB 2017 (vol 60 pp. 449)
 Alaghmandan, Mahmood; Crann, Jason

Character Density in Central Subalgebras of Compact Quantum Groups
We investigate quantum group generalizations
of various density results from Fourier analysis on compact groups.
In particular, we establish the density of characters in the
space of fixed points of the conjugation action on $L^2(\mathbb{G})$, and
use this result to show the weak* density and norm density of
characters in $ZL^\infty(\mathbb{G})$ and $ZC(\mathbb{G})$, respectively. As a corollary,
we partially answer an open question of Woronowicz.
At the level of $L^1(\mathbb{G})$, we show that the center
$\mathcal{Z}(L^1(\mathbb{G}))$
is precisely the closed linear span of the quantum characters
for a large class of compact quantum groups, including arbitrary
compact Kac algebras. In the latter setting, we show, in addition,
that $\mathcal{Z}(L^1(\mathbb{G}))$ is a completely complemented
$\mathcal{Z}(L^1(\mathbb{G}))$submodule
of $L^1(\mathbb{G})$.
Keywords:compact quantum group, irreducible character Categories:43A20, 43A40, 46J40 

3. CMB Online first
 Pachl, Jan; Steprāns, Juris

Continuity of convolution and SIN groups
Let the measure algebra of a topological group $G$ be equipped
with
the topology of uniform convergence on bounded right uniformly
equicontinuous sets of functions.
Convolution is separately continuous on the measure algebra,
and it is jointly continuous if and only if $G$ has the SIN property.
On the larger space $\mathsf{LUC}(G)^\ast$ which includes the measure
algebra,
convolution is also jointly continuous if and only if the group
has the SIN property,
but not separately continuous for many nonSIN groups.
Keywords:topological group, SIN property, measure algebra, convolution Categories:43A10, 22A10 

4. CMB Online first
 Chen, ChungChuan

Disjoint hypercyclicity and weighted translations on discrete groups
Let $1\leq p\lt \infty$, and let $G$ be a discrete group. We give
a sufficient and necessary condition
for weighted translation operators on the Lebesgue space $\ell^p(G)$
to be densely disjoint hypercyclic.
The characterization for the dual of a weighted translation to
be densely disjoint hypercyclic is also obtained.
Keywords:disjoint hypercyclicity, topological transitivity, weighted translation, $\ell^p$space Categories:47A16, 47B38, 43A15 

5. CMB 2016 (vol 60 pp. 122)
 Ghanei, Mohammad Reza; NasrIsfahani, Rasoul; Nemati, Mehdi

A Homological Property and Arens Regularity of Locally Compact Quantum Groups
We characterize two important notions of amenability and compactness
of
a locally compact quantum group ${\mathbb G}$ in terms of certain
homological
properties. For this, we show that ${\mathbb G}$ is character
amenable if and only if it is both amenable and coamenable.
We finally apply our results to
Arens regularity problems of the quantum group algebra
$L^1({\mathbb G})$; in particular, we improve an interesting result
by Hu, Neufang and Ruan.
Keywords:amenability, Arens regularity, coamenability, locally compact quantum group, homological property Categories:46L89, 43A07, 46H20, 46M10, 58B32 

6. CMB 2016 (vol 60 pp. 111)
 Ghaani Farashahi, Arash

Abstract Plancherel (Trace) Formulas over Homogeneous Spaces of Compact Groups
This paper introduces a unified operator theory approach to the
abstract Plancherel (trace) formulas over
homogeneous spaces of compact groups. Let $G$ be a compact group
and $H$ be a closed subgroup of $G$.
Let $G/H$ be the left coset space of $H$ in $G$ and $\mu$ be
the normalized $G$invariant measure on $G/H$ associated to the
Weil's formula.
Then, we present a generalized abstract notion of Plancherel
(trace) formula for the Hilbert space $L^2(G/H,\mu)$.
Keywords:compact group, homogeneous space, dual space, Plancherel (trace) formula Categories:20G05, 43A85, 43A32, 43A40 

7. CMB 2016 (vol 59 pp. 528)
 Jahan, Qaiser

Characterization of Lowpass Filters on Local Fields of Positive Characteristic
In this article, we give necessary and sufficient conditions
on a function to be a lowpass filter on a local field $K$ of
positive characteristic associated to the scaling function for
multiresolution analysis of $L^2(K)$. We use probability and
martingale methods to provide such a characterization.
Keywords:multiresolution analysis, local field, lowpass filter, scaling function, probability, conditional probability and martingales Categories:42C40, 42C15, 43A70, 11S85 

8. CMB 2016 (vol 59 pp. 693)
 Chen, ChungChuan

Recurrence of Cosine Operator Functions on Groups
In this note, we study the recurrence and topologically multiple
recurrence of a sequence of operators on Banach spaces.
In particular, we give a sufficient and necessary condition for
a cosine operator function,
induced by a sequence of operators on the Lebesgue space of a
locally compact group, to be topologically multiply recurrent.
Keywords:topologically multiple recurrence, recurrence, topological transitivity, hypercyclicity, cosine operator function Categories:47A16, 54B20, 43A15 

9. CMB 2016 (vol 59 pp. 521)
 Hare, Kathryn; Ramsey, L. Thomas

The Relationship Between $\epsilon$Kronecker Sets and Sidon Sets
A subset $E$ of a discrete abelian group is called $\epsilon
$Kronecker if
all $E$functions of modulus one can be approximated to within
$\epsilon $
by characters. $E$ is called a Sidon set if all bounded $E$functions
can be
interpolated by the Fourier transform of measures on the dual
group. As $%
\epsilon $Kronecker sets with $\epsilon \lt 2$ possess the same
arithmetic
properties as Sidon sets, it is natural to ask if they are Sidon.
We use the
Pisier net characterization of Sidonicity to prove this is true.
Keywords:Kronecker set, Sidon set Categories:43A46, 42A15, 42A55 

10. CMB 2015 (vol 58 pp. 632)
 Silberman, Lior

Quantum Unique Ergodicity on Locally Symmetric Spaces: the Degenerate Lift
Given a measure $\bar\mu_\infty$ on a locally symmetric space $Y=\Gamma\backslash
G/K$,
obtained as a weak{*} limit of probability measures associated
to
eigenfunctions of the ring of invariant differential operators,
we
construct a measure $\bar\mu_\infty$ on the homogeneous space $X=\Gamma\backslash
G$
which lifts $\bar\mu_\infty$ and which is invariant by a connected subgroup
$A_{1}\subset A$ of positive dimension, where $G=NAK$ is an Iwasawa
decomposition. If the functions are, in addition, eigenfunctions
of
the Hecke operators, then $\bar\mu_\infty$ is also the limit of measures
associated
to Hecke eigenfunctions on $X$. This generalizes results of the
author
with A. Venkatesh in the case where the spectral parameters
stay
away from the walls of the Weyl chamber.
Keywords:quantum unique ergodicity, microlocal lift, spherical dual Categories:22E50, 43A85 

11. CMB 2015 (vol 58 pp. 415)
 Willson, Benjamin

A Fixed Point Theorem and the Existence of a Haar Measure for Hypergroups Satisfying Conditions Related to Amenability
In this paper we present a fixed point property for amenable
hypergroups which is analogous to Rickert's fixed point theorem
for semigroups. It equates the existence of a left invariant
mean on the space of weakly right uniformly continuous functions
to the existence of a fixed point for any action of the hypergroup.
Using this fixed point property, a certain class of hypergroups
are shown to have a left Haar measure.
Keywords:invariant measure, Haar measure, hypergroup, amenability, function translations Categories:43A62, 43A05, 43A07 

12. CMB 2014 (vol 58 pp. 3)
13. CMB 2014 (vol 57 pp. 834)
 Koh, Doowon

Restriction Operators Acting on Radial Functions on Vector Spaces Over Finite Fields
We study $L^pL^r$ restriction estimates for
algebraic varieties $V$ in the case when restriction operators act on
radial functions in the finite field setting.
We show that if the varieties $V$ lie in odd dimensional vector
spaces over finite fields, then the conjectured restriction estimates
are possible for all radial test functions.
In addition, assuming that the varieties $V$ are defined in even
dimensional spaces and have few intersection points with the sphere
of zero radius, we also obtain the conjectured exponents for all
radial test functions.
Keywords:finite fields, radial functions, restriction operators Categories:42B05, 43A32, 43A15 

14. CMB 2013 (vol 57 pp. 449)
 Alaghmandan, Mahmood; Choi, Yemon; Samei, Ebrahim

ZLamenability Constants of Finite Groups with Two Character Degrees
We calculate the exact amenability constant of the centre of
$\ell^1(G)$ when $G$ is one of the following classes of finite group:
dihedral; extraspecial; or Frobenius with abelian complement and
kernel. This is done using a formula which applies to all finite
groups with two character degrees. In passing, we answer in the
negative a question raised in work of the third author with Azimifard
and Spronk (J. Funct. Anal. 2009).
Keywords:center of group algebras, characters, character degrees, amenability constant, Frobenius group, extraspecial groups Categories:43A20, 20C15 

15. CMB 2013 (vol 56 pp. 729)
 Currey, B.; Mayeli, A.

The Orthonormal Dilation Property for Abstract Parseval Wavelet Frames
In this work we introduce a class of discrete groups containing
subgroups of abstract translations and dilations, respectively. A
variety of wavelet systems can appear as $\pi(\Gamma)\psi$, where $\pi$ is
a unitary representation of a wavelet group and $\Gamma$ is the abstract
pseudolattice $\Gamma$. We prove a condition in order that a Parseval
frame $\pi(\Gamma)\psi$ can be dilated to an orthonormal basis of the
form $\tau(\Gamma)\Psi$ where $\tau$ is a superrepresentation of
$\pi$. For a subclass of groups that includes the case where the
translation subgroup is Heisenberg, we show that this condition
always holds, and we cite familiar examples as applications.
Keywords:frame, dilation, wavelet, BaumslagSolitar group, shearlet Categories:43A65, 42C40, 42C15 

16. CMB 2012 (vol 57 pp. 289)
 Ghasemi, Mehdi; Marshall, Murray; Wagner, Sven

Closure of the Cone of Sums of $2d$powers in Certain Weighted $\ell_1$seminorm Topologies
In a paper from 1976, Berg, Christensen and Ressel prove that the
closure of the cone of sums of squares $\sum
\mathbb{R}[\underline{X}]^2$ in the polynomial ring
$\mathbb{R}[\underline{X}] := \mathbb{R}[X_1,\dots,X_n]$ in the
topology induced by the $\ell_1$norm is equal to
$\operatorname{Pos}([1,1]^n)$, the cone consisting of all polynomials
which are nonnegative on the hypercube $[1,1]^n$. The result is
deduced as a corollary of a general result, established in the same
paper, which is valid for any commutative semigroup.
In later work, Berg and Maserick and Berg, Christensen and Ressel
establish an even more general result, for a commutative semigroup
with involution, for the closure of the cone of sums of squares of
symmetric elements in the weighted $\ell_1$seminorm topology
associated to an absolute value.
In the present paper we give a new proof of these results which is
based on Jacobi's representation theorem from 2001. At the same time,
we use Jacobi's representation theorem to extend these results from
sums of squares to sums of $2d$powers, proving, in particular, that
for any integer $d\ge 1$, the closure of the cone of sums of
$2d$powers $\sum \mathbb{R}[\underline{X}]^{2d}$ in
$\mathbb{R}[\underline{X}]$ in the topology induced by the
$\ell_1$norm is equal to $\operatorname{Pos}([1,1]^n)$.
Keywords:positive definite, moments, sums of squares, involutive semigroups Categories:43A35, 44A60, 13J25 

17. CMB 2012 (vol 57 pp. 37)
 Dashti, Mahshid; NasrIsfahani, Rasoul; Renani, Sima Soltani

Character Amenability of Lipschitz Algebras
Let ${\mathcal X}$ be a locally compact metric space and let
${\mathcal A}$ be any of the Lipschitz algebras
${\operatorname{Lip}_{\alpha}{\mathcal X}}$, ${\operatorname{lip}_{\alpha}{\mathcal X}}$ or
${\operatorname{lip}_{\alpha}^0{\mathcal X}}$. In this paper, we show, as a
consequence of rather more general results on Banach algebras,
that ${\mathcal A}$ is $C$character amenable if and only if
${\mathcal X}$ is uniformly discrete.
Keywords:character amenable, character contractible, Lipschitz algebras, spectrum Categories:43A07, 46H05, 46J10 

18. CMB 2011 (vol 56 pp. 13)
 Alon, Gil; Kozma, Gady

Ordering the Representations of $S_n$ Using the Interchange Process
Inspired by Aldous' conjecture for
the spectral gap of the interchange process and its recent
resolution by Caputo, Liggett, and Richthammer, we define
an associated order $\prec$ on the irreducible representations of $S_n$. Aldous'
conjecture is equivalent to certain representations being comparable
in this order, and hence determining the ``Aldous order'' completely is a
generalized question. We show a few additional entries for this order.
Keywords:Aldous' conjecture, interchange process, symmetric group, representations Categories:82C22, 60B15, 43A65, 20B30, 60J27, 60K35 

19. CMB 2011 (vol 56 pp. 218)
 Yang, Dilian

Functional Equations and Fourier Analysis
By exploring the relations among functional equations, harmonic analysis and representation theory,
we give a unified and very accessible approach to solve three important functional equations 
the d'Alembert equation, the Wilson equation, and the d'Alembert long equation 
on compact groups.
Keywords:functional equations, Fourier analysis, representation of compact groups Categories:39B52, 22C05, 43A30 

20. CMB 2011 (vol 54 pp. 654)
 Forrest, Brian E.; Runde, Volker

Norm One Idempotent $cb$Multipliers with Applications to the Fourier Algebra in the $cb$Multiplier Norm
For a locally compact group $G$, let $A(G)$ be its Fourier algebra, let $M_{cb}A(G)$ denote the completely
bounded multipliers of $A(G)$, and let $A_{\mathit{Mcb}}(G)$ stand for the closure of $A(G)$ in $M_{cb}A(G)$. We
characterize the norm one idempotents in $M_{cb}A(G)$: the indicator function of a set $E \subset G$ is a norm
one idempotent in $M_{cb}A(G)$ if and only if $E$ is a coset of an open subgroup of $G$. As applications, we
describe the closed ideals of $A_{\mathit{Mcb}}(G)$ with an approximate identity bounded by $1$, and we characterize
those $G$ for which $A_{\mathit{Mcb}}(G)$ is $1$amenable in the sense of B. E. Johnson. (We can even slightly
relax the norm bounds.)
Keywords:amenability, bounded approximate identity, $cb$multiplier norm, Fourier algebra, norm one idempotent Categories:43A22, 20E05, 43A30, 46J10, 46J40, 46L07, 47L25 

21. CMB 2011 (vol 54 pp. 663)
 Haas, Ruth; G. Helminck, Aloysius

Admissible Sequences for Twisted Involutions in Weyl Groups
Let $W$ be a Weyl group, $\Sigma$ a set of simple reflections in $W$
related to a basis $\Delta$ for the root system $\Phi$ associated with
$W$ and $\theta$ an involution such that $\theta(\Delta) = \Delta$. We
show that the set of $\theta$twisted involutions in $W$,
$\mathcal{I}_{\theta} = \{w\in W \mid \theta(w) = w^{1}\}$ is in one
to one correspondence with the set of regular involutions
$\mathcal{I}_{\operatorname{Id}}$. The elements of $\mathcal{I}_{\theta}$ are
characterized by sequences in $\Sigma$ which induce an ordering called
the RichardsonSpringer Poset. In particular, for $\Phi$ irreducible,
the ascending RichardsonSpringer Poset of $\mathcal{I}_{\theta}$,
for nontrivial $\theta$ is identical to the descending
RichardsonSpringer Poset of $\mathcal{I}_{\operatorname{Id}}$.
Categories:20G15, 20G20, 22E15, 22E46, 43A85 

22. CMB 2011 (vol 54 pp. 544)
23. CMB 2010 (vol 54 pp. 207)
 Chen, Jiecheng; Fan, Dashan

A Bilinear Fractional Integral on Compact Lie Groups
As an analog of a wellknown theorem on the bilinear
fractional integral on $\mathbb{R}^{n}$ by Kenig and Stein,
we establish the similar boundedness
property for a bilinear fractional integral on a compact Lie group. Our
result is also a generalization of our recent theorem
about the
bilinear fractional integral on torus.
Keywords:bilinear fractional integral, $L^p$ spaces, Heat kernel Categories:43A22, 43A32, 43B25 

24. CMB 2010 (vol 54 pp. 126)
25. CMB 2010 (vol 54 pp. 3)
 Bakonyi, M.; Timotin, D.

Extensions of Positive Definite Functions on Amenable Groups
Let $S$ be a subset of an amenable group $G$ such that $e\in S$ and
$S^{1}=S$. The main result of this paper states that if the Cayley
graph of $G$ with respect to $S$ has a certain combinatorial property,
then every positive definite operatorvalued function on $S$ can be
extended to a positive definite function on $G$. Several known
extension results are obtained as corollaries. New applications are
also presented.
Categories:43A35, 47A57, 20E05 
