1. CMB Online first
 Li, Junfeng; Yu, Haixia

Oscillatory HyperHilbert Transform Associated with Plane Curves
In this paper, the bounded properties of oscillatory hyperHilbert
transform along certain plane curves $\gamma(t)$
$$T_{\alpha,\beta}f(x,y)=\int_{0}^1f(xt,y\gamma(t))e^{ i t^{\beta}}\frac{\textrm{d}t}{t^{1+\alpha}}$$
were studied. For a general curves, these operators are bounded
in ${L^2(\mathbb{R}^{2})}$, if $\beta\geq 3\alpha$. And their
boundedness in $L^p(\mathbb{R}^{2})$
were also obtained, whenever $\beta\gt 3\alpha$, $\frac{2\beta}{2\beta3\alpha}\lt p\lt \frac{2\beta}{3\alpha}$.
Keywords:oscillatory hyperHilbert transform, oscillatory integral Categories:42B20, 42B35 

2. CMB Online first
 Rocha, Pablo Alejandro

A remark on certain integral operators of fractional type
For $m, n \in \mathbb{N}$, $1\lt m \leq n$, we write $n = n_1 +
\dots + n_m$ where $\{ n_1, \dots, n_m \} \subset \mathbb{N}$. Let
$A_1, \dots, A_m$ be $n \times n$ singular real matrices such that
$\bigoplus_{i=1}^{m} \bigcap_{1\leq j \neq i \leq m} \mathcal{N}_j
= \mathbb{R}^{n},$ where
$\mathcal{N}_j = \{ x : A_j x = 0 \}$, $dim(\mathcal{N}_j)=nn_j$
and $A_1+ \dots+ A_m$ is invertible. In this paper we study integral
operators of the form
$T_{r}f(x)= \int_{\mathbb{R}^{n}} \, xA_1 y^{n_1 + \alpha_1}
\cdots xA_m y^{n_m + \alpha_m} f(y) \, dy,$
$n_1 + \dots + n_m = n$, $\frac{\alpha_1}{n_1} = \dots = \frac{\alpha_m}{n_m}=r$,
$0 \lt r \lt 1$, and the matrices $A_i$'s are as above. We obtain
the $H^{p}(\mathbb{R}^{n})L^{q}(\mathbb{R}^{n})$ boundedness
of $T_r$ for $0\lt p\lt \frac{1}{r}$ and $\frac{1}{q}=\frac{1}{p} 
r$.
Keywords:integral operator, Hardy space Categories:42B20, 42B30 

3. CMB Online first
 Ding, Yong; Lai, Xudong

On a singular integral of ChristJournÃ© type with homogeneous kernel
In this paper, we prove that the following singular integral
defined by
$$T_{\Omega,a}f(x)=\operatorname{p.v.}\int_{\mathbb{R}^{d}}\frac{\Omega(xy)}{xy^d}\cdot m_{x,y}a\cdot
f(y)dy$$
is bounded on $L^p(\mathbb{R}^d)$ for $1\lt p\lt \infty$ and is of weak type
(1,1), where $\Omega\in L\log^+L(\mathbb{S}^{d1})$ and
$m_{x,y}a=:\int_0^1a(sx+(1s)y)ds$
with $a\in L^\infty(\mathbb{R}^d)$ satisfying some restricted conditions.
Keywords:CalderÃ³n commutator, rough kernel, weak type (1,1) Category:42B20 

4. CMB 2017 (vol 60 pp. 571)
5. CMB Online first
 Wang, Lian Daniel

A Multiplier Theorem on Anisotropic Hardy Spaces
We present a multiplier theorem on anisotropic
Hardy spaces. When $m$ satisfies the anisotropic, pointwise Mihlin
condition, we obtain boundedness of the multiplier operator $T_m
: H_A^p (\mathbb R^n) \rightarrow H_A^p (\mathbb R^n)$, for the range of $p$
that depends on the eccentricities of the dilation $A$ and the
level of regularity of a multiplier symbol $m$. This extends
the classical multiplier theorem of Taibleson and Weiss.
Keywords:anisotropic Hardy space, multiplier, Fourier transform Categories:42B30, 42B25, 42B35 

6. CMB Online first
7. CMB 2016 (vol 60 pp. 655)
 Zhuo, Ciqiang; Sickel, Winfried; Yang, Dachun; Yuan, Wen

Characterizations of BesovType and TriebelLizorkinType Spaces via Averages on Balls
Let $\ell\in\mathbb N$ and $\alpha\in (0,2\ell)$. In this article,
the authors establish
equivalent characterizations
of Besovtype spaces, TriebelLizorkintype
spaces and BesovMorrey spaces via the sequence
$\{fB_{\ell,2^{k}}f\}_{k}$ consisting of the difference between
$f$ and
the ball average $B_{\ell,2^{k}}f$. These results give a way
to introduce Besovtype spaces,
TriebelLizorkintype spaces and BesovMorrey spaces with any
smoothness order
on metric measure spaces. As special cases, the authors obtain
a new characterization of MorreySobolev spaces
and $Q_\alpha$ spaces with $\alpha\in(0,1)$, which are of independent
interest.
Keywords:Besov space, TriebelLizorkin space, ball average, CalderÃ³n reproducing formula Categories:42B25, 46E35, 42B35 

8. CMB 2016 (vol 60 pp. 131)
9. CMB 2016 (vol 60 pp. 586)
 Liu, Feng; Wu, Huoxiong

Endpoint Regularity of Multisublinear Fractional Maximal Functions
In this paper we investigate
the endpoint regularity properties of the multisublinear
fractional maximal operators, which include the multisublinear
HardyLittlewood maximal operator. We obtain some new bounds
for the derivative of the onedimensional multisublinear
fractional maximal operators acting on vectorvalued function
$\vec{f}=(f_1,\dots,f_m)$ with all $f_j$ being $BV$functions.
Keywords:multisublinear fractional maximal operators, Sobolev spaces, bounded variation Categories:42B25, 46E35 

10. CMB 2016 (vol 59 pp. 834)
 Liao, Fanghui; Liu, Zongguang

Some Properties of TriebelLizorkin and Besov Spaces Associated with Zygmund Dilations
In this paper, using CalderÃ³n's
reproducing formula and almost orthogonality estimates, we
prove the lifting property and the embedding theorem of the TriebelLizorkin
and Besov spaces associated with Zygmund dilations.
Keywords:TriebelLizorkin and Besov spaces, Riesz potential, CalderÃ³n's reproducing formula, almost orthogonality estimate, Zygmund dilation, embedding theorem Categories:42B20, 42B35 

11. CMB 2015 (vol 59 pp. 62)
 Feng, Han

Uncertainty Principles on Weighted Spheres, Balls and Simplexes
This paper studies the uncertainty principle for spherical
$h$harmonic expansions on the unit sphere of $\mathbb{R}^d$ associated
with a weight function invariant under a general finite reflection
group, which
is in full analogy with the classical Heisenberg inequality.
Our proof is motivated by a new decomposition of the DunklLaplaceBeltrami
operator on the weighted sphere.
Keywords:uncertainty principle, Dunkl theory Categories:42C10, 42B10 

12. CMB 2015 (vol 59 pp. 104)
 He, Ziyi; Yang, Dachun; Yuan, Wen

LittlewoodPaley Characterizations of SecondOrder Sobolev Spaces via Averages on Balls
In this paper, the authors characterize secondorder Sobolev
spaces $W^{2,p}({\mathbb R}^n)$,
with $p\in [2,\infty)$ and $n\in\mathbb N$ or $p\in (1,2)$ and
$n\in\{1,2,3\}$, via the Lusin area
function and the LittlewoodPaley $g_\lambda^\ast$function in
terms of ball means.
Keywords:Sobolev space, ball means, Lusinarea function, $g_\lambda^*$function Categories:46E35, 42B25, 42B20, 42B35 

13. CMB 2015 (vol 58 pp. 757)
14. CMB 2015 (vol 58 pp. 507)
 Hsu, MingHsiu; Lee, MingYi

VMO Space Associated with Parabolic Sections and its Application
In this paper we define $VMO_\mathcal{P}$ space associated with
a family $\mathcal{P}$ of parabolic sections and show that the
dual of $VMO_\mathcal{P}$ is the Hardy space $H^1_\mathcal{P}$.
As an application, we prove that almost everywhere convergence
of a bounded sequence in $H^1_\mathcal{P}$ implies weak* convergence.
Keywords:MongeAmpere equation, parabolic section, Hardy space, BMO, VMO Category:42B30 

15. CMB 2015 (vol 58 pp. 808)
 Liu, Feng; Wu, Huoxiong

On the Regularity of the Multisublinear Maximal Functions
This paper is concerned with the study of
the regularity for the multisublinear maximal operator. It is
proved that the multisublinear maximal operator is bounded on
firstorder Sobolev spaces. Moreover, two key pointwise
inequalities for the partial derivatives of the multisublinear
maximal functions are established. As an application, the
quasicontinuity on the multisublinear maximal function is also
obtained.
Keywords:regularity, multisublinear maximal operator, Sobolev spaces, partial deviative, quasicontinuity Categories:42B25, 46E35 

16. CMB 2014 (vol 58 pp. 432)
 Yang, Dachun; Yang, Sibei

Secondorder Riesz Transforms and Maximal Inequalities Associated with Magnetic SchrÃ¶dinger Operators
Let $A:=(\nablai\vec{a})\cdot(\nablai\vec{a})+V$ be a
magnetic SchrÃ¶dinger operator on $\mathbb{R}^n$,
where $\vec{a}:=(a_1,\dots, a_n)\in L^2_{\mathrm{loc}}(\mathbb{R}^n,\mathbb{R}^n)$
and $0\le V\in L^1_{\mathrm{loc}}(\mathbb{R}^n)$ satisfy some reverse
HÃ¶lder conditions.
Let $\varphi\colon \mathbb{R}^n\times[0,\infty)\to[0,\infty)$ be such that
$\varphi(x,\cdot)$ for any given $x\in\mathbb{R}^n$ is an Orlicz function,
$\varphi(\cdot,t)\in {\mathbb A}_{\infty}(\mathbb{R}^n)$ for all $t\in (0,\infty)$
(the class of uniformly Muckenhoupt weights) and its uniformly critical upper type index
$I(\varphi)\in(0,1]$. In this article, the authors prove that
secondorder Riesz transforms $VA^{1}$ and
$(\nablai\vec{a})^2A^{1}$ are bounded from the
MusielakOrliczHardy space $H_{\varphi,\,A}(\mathbb{R}^n)$, associated with $A$,
to the MusielakOrlicz space $L^{\varphi}(\mathbb{R}^n)$. Moreover, the authors
establish the boundedness of $VA^{1}$ on $H_{\varphi, A}(\mathbb{R}^n)$. As applications, some
maximal inequalities associated with $A$ in the scale of $H_{\varphi,
A}(\mathbb{R}^n)$ are obtained.
Keywords:MusielakOrliczHardy space, magnetic SchrÃ¶dinger operator, atom, secondorder Riesz transform, maximal inequality Categories:42B30, 42B35, 42B25, 35J10, 42B37, 46E30 

17. CMB 2014 (vol 58 pp. 19)
 Chen, Jiecheng; Hu, Guoen

Compact Commutators of Rough Singular Integral Operators
Let $b\in \mathrm{BMO}(\mathbb{R}^n)$ and $T_{\Omega}$ be the singular
integral operator with kernel $\frac{\Omega(x)}{x^n}$, where
$\Omega$ is homogeneous of degree zero, integrable and has mean
value zero on the unit sphere $S^{n1}$. In this paper, by Fourier
transform estimates and approximation to the operator $T_{\Omega}$
by integral operators with smooth kernels, it is proved that if
$b\in \mathrm{CMO}(\mathbb{R}^n)$ and $\Omega$ satisfies a certain
minimal size condition, then the commutator generated by $b$ and
$T_{\Omega}$ is a compact operator on $L^p(\mathbb{R}^n)$ for
appropriate index $p$. The associated maximal operator is also
considered.
Keywords:commutator,singular integral operator, compact operator, maximal operator Category:42B20 

18. CMB 2014 (vol 57 pp. 834)
 Koh, Doowon

Restriction Operators Acting on Radial Functions on Vector Spaces Over Finite Fields
We study $L^pL^r$ restriction estimates for
algebraic varieties $V$ in the case when restriction operators act on
radial functions in the finite field setting.
We show that if the varieties $V$ lie in odd dimensional vector
spaces over finite fields, then the conjectured restriction estimates
are possible for all radial test functions.
In addition, assuming that the varieties $V$ are defined in even
dimensional spaces and have few intersection points with the sphere
of zero radius, we also obtain the conjectured exponents for all
radial test functions.
Keywords:finite fields, radial functions, restriction operators Categories:42B05, 43A32, 43A15 

19. CMB 2011 (vol 56 pp. 326)
20. CMB 2011 (vol 56 pp. 3)
 Aïssiou, Tayeb

Semiclassical Limits of Eigenfunctions on Flat $n$Dimensional Tori
We provide a proof of a conjecture by Jakobson, Nadirashvili, and
Toth stating
that on an $n$dimensional flat torus $\mathbb T^{n}$, and the Fourier transform
of squares of the eigenfunctions $\varphi_\lambda^2$ of the Laplacian have
uniform $l^n$ bounds that do not depend on the eigenvalue $\lambda$. The proof
is a generalization of an argument by Jakobson, et al. for the
lower dimensional cases. These results imply uniform bounds for semiclassical
limits on $\mathbb T^{n+2}$. We also prove a geometric lemma that bounds the number of
codimensionone simplices satisfying a certain restriction on an
$n$dimensional sphere $S^n(\lambda)$ of radius $\sqrt{\lambda}$, and we use it in
the proof.
Keywords:semiclassical limits, eigenfunctions of Laplacian on a torus, quantum limits Categories:58G25, 81Q50, 35P20, 42B05 

21. CMB 2011 (vol 55 pp. 646)
 Zhou, Jiang; Ma, Bolin

Marcinkiewicz Commutators with Lipschitz Functions in Nonhomogeneous Spaces
Under the assumption that $\mu$ is a nondoubling
measure, we study certain commutators generated by the
Lipschitz function and the Marcinkiewicz integral whose kernel
satisfies a HÃ¶rmandertype condition. We establish the boundedness
of these commutators on the Lebesgue spaces, Lipschitz spaces, and
Hardy spaces. Our results are extensions of known theorems in the
doubling case.
Keywords:non doubling measure, Marcinkiewicz integral, commutator, ${\rm Lip}_{\beta}(\mu)$, $H^1(\mu)$ Categories:42B25, 47B47, 42B20, 47A30 

22. CMB 2011 (vol 55 pp. 555)
 Michalowski, Nicholas; Rule, David J.; Staubach, Wolfgang

Weighted $L^p$ Boundedness of Pseudodifferential Operators and Applications
In this paper we prove weighted norm inequalities with weights in
the $A_p$ classes, for pseudodifferential operators with symbols in
the class ${S^{n(\rho 1)}_{\rho, \delta}}$ that fall outside the
scope of CalderÃ³nZygmund theory. This is accomplished by
controlling the sharp function of the pseudodifferential operator by
HardyLittlewood type maximal functions. Our weighted norm
inequalities also yield $L^{p}$ boundedness of commutators of
functions of bounded mean oscillation with a wide class of operators
in $\mathrm{OP}S^{m}_{\rho, \delta}$.
Keywords:weighted norm inequality, pseudodifferential operator, commutator estimates Categories:42B20, 42B25, 35S05, 47G30 

23. CMB 2011 (vol 55 pp. 708)
24. CMB 2011 (vol 55 pp. 303)
 Han, Yongsheng; Lee, MingYi; Lin, ChinCheng

Atomic Decomposition and Boundedness of Operators on Weighted Hardy Spaces
In this article, we establish a new atomic decomposition for $f\in L^2_w\cap H^p_w$,
where the decomposition converges in $L^2_w$norm rather than in the distribution sense.
As applications of this decomposition, assuming that $T$ is a linear
operator bounded on $L^2_w$ and $0
Keywords:$A_p$ weights, atomic decomposition, CalderÃ³n reproducing formula, weighted Hardy spaces Categories:42B25, 42B30 

25. CMB 2010 (vol 54 pp. 113)
 Hytönen, Tuomas P.

On the Norm of the BeurlingAhlfors Operator in Several Dimensions
The generalized BeurlingAhlfors operator $S$ on
$L^p(\mathbb{R}^n;\Lambda)$, where $\Lambda:=\Lambda(\mathbb{R}^n)$ is the
exterior algebra with its natural Hilbert space norm, satisfies the
estimate
$$\S\_{\mathcal{L}(L^p(\mathbb{R}^n;\Lambda))}\leq(n/2+1)(p^*1),\quad
p^*:=\max\{p,p'\}$$
This improves on earlier results in all dimensions $n\geq 3$. The
proof is based on the heat extension and relies at the bottom on
Burkholder's sharp inequality for martingale transforms.
Categories:42B20, 60G46 
