Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 42B30 ( $H^p$-spaces )

  Expand all        Collapse all Results 1 - 7 of 7

1. CMB Online first

Rocha, Pablo Alejandro
A remark on certain integral operators of fractional type
For $m, n \in \mathbb{N}$, $1\lt m \leq n$, we write $n = n_1 + \dots + n_m$ where $\{ n_1, \dots, n_m \} \subset \mathbb{N}$. Let $A_1, \dots, A_m$ be $n \times n$ singular real matrices such that $\bigoplus_{i=1}^{m} \bigcap_{1\leq j \neq i \leq m} \mathcal{N}_j = \mathbb{R}^{n},$ where $\mathcal{N}_j = \{ x : A_j x = 0 \}$, $dim(\mathcal{N}_j)=n-n_j$ and $A_1+ \dots+ A_m$ is invertible. In this paper we study integral operators of the form $T_{r}f(x)= \int_{\mathbb{R}^{n}} \, |x-A_1 y|^{-n_1 + \alpha_1} \cdots |x-A_m y|^{-n_m + \alpha_m} f(y) \, dy,$ $n_1 + \dots + n_m = n$, $\frac{\alpha_1}{n_1} = \dots = \frac{\alpha_m}{n_m}=r$, $0 \lt r \lt 1$, and the matrices $A_i$'s are as above. We obtain the $H^{p}(\mathbb{R}^{n})-L^{q}(\mathbb{R}^{n})$ boundedness of $T_r$ for $0\lt p\lt \frac{1}{r}$ and $\frac{1}{q}=\frac{1}{p} - r$.

Keywords:integral operator, Hardy space
Categories:42B20, 42B30

2. CMB Online first

Wang, Li-an Daniel
A Multiplier Theorem on Anisotropic Hardy Spaces
We present a multiplier theorem on anisotropic Hardy spaces. When $m$ satisfies the anisotropic, pointwise Mihlin condition, we obtain boundedness of the multiplier operator $T_m : H_A^p (\mathbb R^n) \rightarrow H_A^p (\mathbb R^n)$, for the range of $p$ that depends on the eccentricities of the dilation $A$ and the level of regularity of a multiplier symbol $m$. This extends the classical multiplier theorem of Taibleson and Weiss.

Keywords:anisotropic Hardy space, multiplier, Fourier transform
Categories:42B30, 42B25, 42B35

3. CMB 2015 (vol 58 pp. 507)

Hsu, Ming-Hsiu; Lee, Ming-Yi
VMO Space Associated with Parabolic Sections and its Application
In this paper we define $VMO_\mathcal{P}$ space associated with a family $\mathcal{P}$ of parabolic sections and show that the dual of $VMO_\mathcal{P}$ is the Hardy space $H^1_\mathcal{P}$. As an application, we prove that almost everywhere convergence of a bounded sequence in $H^1_\mathcal{P}$ implies weak* convergence.

Keywords:Monge-Ampere equation, parabolic section, Hardy space, BMO, VMO

4. CMB 2014 (vol 58 pp. 432)

Yang, Dachun; Yang, Sibei
Second-order Riesz Transforms and Maximal Inequalities Associated with Magnetic Schrödinger Operators
Let $A:=-(\nabla-i\vec{a})\cdot(\nabla-i\vec{a})+V$ be a magnetic Schrödinger operator on $\mathbb{R}^n$, where $\vec{a}:=(a_1,\dots, a_n)\in L^2_{\mathrm{loc}}(\mathbb{R}^n,\mathbb{R}^n)$ and $0\le V\in L^1_{\mathrm{loc}}(\mathbb{R}^n)$ satisfy some reverse Hölder conditions. Let $\varphi\colon \mathbb{R}^n\times[0,\infty)\to[0,\infty)$ be such that $\varphi(x,\cdot)$ for any given $x\in\mathbb{R}^n$ is an Orlicz function, $\varphi(\cdot,t)\in {\mathbb A}_{\infty}(\mathbb{R}^n)$ for all $t\in (0,\infty)$ (the class of uniformly Muckenhoupt weights) and its uniformly critical upper type index $I(\varphi)\in(0,1]$. In this article, the authors prove that second-order Riesz transforms $VA^{-1}$ and $(\nabla-i\vec{a})^2A^{-1}$ are bounded from the Musielak-Orlicz-Hardy space $H_{\varphi,\,A}(\mathbb{R}^n)$, associated with $A$, to the Musielak-Orlicz space $L^{\varphi}(\mathbb{R}^n)$. Moreover, the authors establish the boundedness of $VA^{-1}$ on $H_{\varphi, A}(\mathbb{R}^n)$. As applications, some maximal inequalities associated with $A$ in the scale of $H_{\varphi, A}(\mathbb{R}^n)$ are obtained.

Keywords:Musielak-Orlicz-Hardy space, magnetic Schrödinger operator, atom, second-order Riesz transform, maximal inequality
Categories:42B30, 42B35, 42B25, 35J10, 42B37, 46E30

5. CMB 2011 (vol 55 pp. 303)

Han, Yongsheng; Lee, Ming-Yi; Lin, Chin-Cheng
Atomic Decomposition and Boundedness of Operators on Weighted Hardy Spaces
In this article, we establish a new atomic decomposition for $f\in L^2_w\cap H^p_w$, where the decomposition converges in $L^2_w$-norm rather than in the distribution sense. As applications of this decomposition, assuming that $T$ is a linear operator bounded on $L^2_w$ and $0
Keywords:$A_p$ weights, atomic decomposition, Calderón reproducing formula, weighted Hardy spaces
Categories:42B25, 42B30

6. CMB 2010 (vol 54 pp. 100)

Fan, Dashan; Wu, Huoxiong
On the Generalized Marcinkiewicz Integral Operators with Rough Kernels
A class of generalized Marcinkiewicz integral operators is introduced, and, under rather weak conditions on the integral kernels, the boundedness of such operators on $L^p$ and Triebel--Lizorkin spaces is established.

Keywords: Marcinkiewicz integral, Littlewood--Paley theory, Triebel--Lizorkin space, rough kernel, product domain
Categories:42B20, , , , , 42B25, 42B30, 42B99

7. CMB 2002 (vol 45 pp. 46)

Dafni, Galia
Local $\VMO$ and Weak Convergence in $\hone$
A local version of $\VMO$ is defined, and the local Hardy space $\hone$ is shown to be its dual. An application to weak-$*$ convergence in $\hone$ is proved.

Categories:42B30, 46E99

© Canadian Mathematical Society, 2017 :