CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 42A50 ( Conjugate functions, conjugate series, singular integrals )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB Online first

Dang, Pei; Liu, Hua; Qian, Tao
Hilbert Transformation and Representation of the $ax+b$ Group
In this paper we study the Hilbert transformations over $L^2(\mathbb{R})$ and $L^2(\mathbb{T})$ from the viewpoint of symmetry. For a linear operator over $L^2(\mathbb{R})$ commutative with the ax+b group we show that the operator is of the form $ \lambda I+\eta H, $ where $I$ and $H$ are the identity operator and Hilbert transformation respectively, and $\lambda,\eta$ are complex numbers. In the related literature this result was proved through first invoking the boundedness result of the operator, proved though a big machinery. In our setting the boundedness is a consequence of the boundedness of the Hilbert transformation. The methodology that we use is Gelfand-Naimark's representation of the ax+b group. Furthermore we prove a similar result on the unit circle. Although there does not exist a group like ax+b on the unit circle, we construct a semigroup to play the same symmetry role for the Hilbert transformations over the circle $L^2(\mathbb{T}).$

Keywords:singular integral, Hilbert transform, the $ax+b$ group
Categories:30E25, 44A15, 42A50

2. CMB 2016 (vol 59 pp. 497)

De Carli, Laura; Samad, Gohin Shaikh
One-parameter Groups of Operators and Discrete Hilbert Transforms
We show that the discrete Hilbert transform and the discrete Kak-Hilbert transform are infinitesimal generator of one-parameter groups of operators in $\ell^2$.

Keywords:discrete Hilbert transform, groups of operators, isometries
Categories:42A45, 42A50, 41A44

3. CMB 2005 (vol 48 pp. 370)

Daly, J. E.; Fridli, S.
Trigonometric Multipliers on $H_{2\pi}$
In this paper we consider multipliers on the real Hardy space $H_{2\pi}$. It is known that the Marcinkiewicz and the H\"ormander--Mihlin conditions are sufficient for the corresponding trigonometric multiplier to be bounded on $L_{2\pi}^p$, $1
Keywords:Multipliers, Hardy space
Categories:42A45, 42A50, 42A85

© Canadian Mathematical Society, 2017 : https://cms.math.ca/