Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 42 ( Fourier analysis )

  Expand all        Collapse all Results 51 - 75 of 83

51. CMB 2009 (vol 52 pp. 521)

Chen, Yanping; Ding, Yong
The Parabolic Littlewood--Paley Operator with Hardy Space Kernels
In this paper, we give the $L^p$ boundedness for a class of parabolic Littlewood--Paley $g$-function with its kernel function $\Omega$ is in the Hardy space $H^1(S^{n-1})$.

Keywords:parabolic Littlewood-Paley operator, Hardy space, rough kernel
Categories:42B20, 42B25

52. CMB 2009 (vol 52 pp. 95)

Miranian, L.
Matrix Valued Orthogonal Polynomials on the Unit Circle: Some Extensions of the Classical Theory
In the work presented below the classical subject of orthogonal polynomials on the unit circle is discussed in the matrix setting. An explicit matrix representation of the matrix valued orthogonal polynomials in terms of the moments of the measure is presented. Classical recurrence relations are revisited using the matrix representation of the polynomials. The matrix expressions for the kernel polynomials and the Christoffel--Darboux formulas are presented for the first time.

Keywords:Matrix valued orthogonal polynomials, unit circle, Schur complements, recurrence relations, kernel polynomials, Christoffel-Darboux

53. CMB 2008 (vol 51 pp. 487)

Betancor, Jorge J.; Mart\'{\i}nez, Teresa; Rodr\'{\i}guez-Mesa, Lourdes
Laplace Transform Type Multipliers for Hankel Transforms
In this paper we establish that Hankel multipliers of Laplace transform type are bounded from $L^p(w)$ into itself when $1
Keywords:Hankel transform, Laplace transform, multiplier, Calderón--Zygmund

54. CMB 2008 (vol 51 pp. 348)

Casazza, Peter G.; Christensen, Ole
The Reconstruction Property in Banach Spaces and a Perturbation Theorem
Perturbation theory is a fundamental tool in Banach space theory. However, the applications of the classical results are limited by the fact that they force the perturbed sequence to be equivalent to the given sequence. We will develop a more general perturbation theory that does not force equivalence of the sequences.


55. CMB 2007 (vol 50 pp. 85)

Han, Deguang
Classification of Finite Group-Frames and Super-Frames
Given a finite group $G$, we examine the classification of all frame representations of $G$ and the classification of all $G$-frames, \emph{i.e.,} frames induced by group representations of $G$. We show that the exact number of equivalence classes of $G$-frames and the exact number of frame representations can be explicitly calculated. We also discuss how to calculate the largest number $L$ such that there exists an $L$-tuple of strongly disjoint $G$-frames.

Keywords:frames, group-frames, frame representations, disjoint frames
Categories:42C15, 46C05, 47B10

56. CMB 2006 (vol 49 pp. 414)

Jiang, Liya; Jia, Houyu; Xu, Han
Commutators Estimates on Triebel--Lizorkin Spaces
In this paper, we consider the behavior of the commutators of convolution operators on the Triebel--Lizorkin spaces $\dot{F}^{s, q} _p$.

Keywords:commutators, Triebel--Lizorkin spaces, paraproduct
Categories:42B, 46F

57. CMB 2006 (vol 49 pp. 438)

Mercer, Idris David
Unimodular Roots of\\ Special Littlewood Polynomials
We call $\alpha(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1}$ a Littlewood polynomial if $a_j = \pm 1$ for all $j$. We call $\alpha(z)$ self-reciprocal if $\alpha(z) = z^{n-1}\alpha(1/z)$, and call $\alpha(z)$ skewsymmetric if $n = 2m+1$ and $a_{m+j} = (-1)^j a_{m-j}$ for all $j$. It has been observed that Littlewood polynomials with particularly high minimum modulus on the unit circle in $\bC$ tend to be skewsymmetric. In this paper, we prove that a skewsymmetric Littlewood polynomial cannot have any zeros on the unit circle, as well as providing a new proof of the known result that a self-reciprocal Littlewood polynomial must have a zero on the unit circle.

Categories:26C10, 30C15, 42A05

58. CMB 2006 (vol 49 pp. 3)

Al-Salman, Ahmad
On a Class of Singular Integral Operators With Rough Kernels
In this paper, we study the $L^p$ mapping properties of a class of singular integral operators with rough kernels belonging to certain block spaces. We prove that our operators are bounded on $L^p$ provided that their kernels satisfy a size condition much weaker than that for the classical Calder\'{o}n--Zygmund singular integral operators. Moreover, we present an example showing that our size condition is optimal. As a consequence of our results, we substantially improve a previously known result on certain maximal functions.

Keywords:Singular integrals, Rough kernels, Square functions,, Maximal functions, Block spaces
Categories:42B20, 42B15, 42B25

59. CMB 2005 (vol 48 pp. 370)

Daly, J. E.; Fridli, S.
Trigonometric Multipliers on $H_{2\pi}$
In this paper we consider multipliers on the real Hardy space $H_{2\pi}$. It is known that the Marcinkiewicz and the H\"ormander--Mihlin conditions are sufficient for the corresponding trigonometric multiplier to be bounded on $L_{2\pi}^p$, $1
Keywords:Multipliers, Hardy space
Categories:42A45, 42A50, 42A85

60. CMB 2005 (vol 48 pp. 382)

De Carli, Laura
Uniform Estimates of Ultraspherical Polynomials of Large Order
In this paper we prove the sharp inequality $$ |P_n^{(s)}(x)|\leq P_n^{(s)}(1)\bigl(|x|^n +\frac{n-1}{2 s+1}(1-|x|^n)\bigr),$$ where $P_n^{(s)}(x)$ is the classical ultraspherical polynomial of degree $n$ and order $s\ge n\frac{1+\sqrt 5}{4}$. This inequality can be refined in $[0,z_n^s]$ and $[z_n^s,1]$, where $z_n^s$ denotes the largest zero of $P_n^{(s)}(x)$.

Categories:42C05, 33C47

61. CMB 2005 (vol 48 pp. 260)

Oberlin, Daniel M.
A Restriction Theorem for a \\$k$-Surface in $\mathbb R ^n$
We establish a sharp Fourier restriction estimate for a measure on a $k$-surface in $\mathbb R ^n$, where $n=k(k+3)/2$.

Keywords:Fourier restriction

62. CMB 2004 (vol 47 pp. 475)

Wade, W. R.
Uniqueness of Almost Everywhere Convergent Vilenkin Series
D. J. Grubb [3] has shown that uniqueness holds, under a mild growth condition, for Vilenkin series which converge almost everywhere to zero. We show that, under even less restrictive growth conditions, one can replace the limit function 0 by an arbitrary $f\in L^q$, when $q>1$.

Categories:43A75, 42C10

63. CMB 2004 (vol 47 pp. 3)

Al-Salman, Ahmad; Pan, Yibiao
Singular Integrals With Rough Kernels
In this paper we establish the $L^p$ boundedness of a class of singular integrals with rough kernels associated to polynomial mappings.


64. CMB 2003 (vol 46 pp. 191)

Kim, Yong-Cheol
Weak Type Estimates of the Maximal Quasiradial Bochner-Riesz Operator On Certain Hardy Spaces
Let $\{A_t\}_{t>0}$ be the dilation group in $\mathbb{R}^n$ generated by the infinitesimal generator $M$ where $A_t=\exp(M\log t)$, and let $\varrho\in C^{\infty}(\mathbb{R}^n\setminus\{0\})$ be a $A_t$-homogeneous distance function defined on $\mathbb{R}^n$. For $f\in \mathfrak{S}(\mathbb{R}^n)$, we define the maximal quasiradial Bochner-Riesz operator $\mathfrak{M}^{\delta}_{\varrho}$ of index $\delta>0$ by $$ \mathfrak{M}^{\delta}_{\varrho} f(x)=\sup_{t>0}|\mathcal{F}^{-1} [(1-\varrho/t)_+^{\delta}\hat f ](x)|. $$ If $A_t=t I$ and $\{\xi\in \mathbb{R}^n\mid \varrho(\xi)=1\}$ is a smooth convex hypersurface of finite type, then we prove in an extremely easy way that $\mathfrak{M}^{\delta}_{\varrho}$ is well defined on $H^p(\mathbb{R}^n)$ when $\delta=n(1/p-1/2)-1/2$ and $0n(1/p-1/2)-1/2$ and $0
Categories:42B15, 42B25

65. CMB 2002 (vol 45 pp. 46)

Dafni, Galia
Local $\VMO$ and Weak Convergence in $\hone$
A local version of $\VMO$ is defined, and the local Hardy space $\hone$ is shown to be its dual. An application to weak-$*$ convergence in $\hone$ is proved.

Categories:42B30, 46E99

66. CMB 2002 (vol 45 pp. 25)

Bloom, Steven; Kerman, Ron
Extrapolation of $L^p$ Data from a Modular Inequality
If an operator $T$ satisfies a modular inequality on a rearrangement invariant space $L^\rho (\Omega,\mu)$, and if $p$ is strictly between the indices of the space, then the Lebesgue inequality $\int |Tf|^p \leq C \int |f|^p$ holds. This extrapolation result is a partial converse to the usual interpolation results. A modular inequality for Orlicz spaces takes the form $\int \Phi (|Tf|) \leq \int \Phi (C |f|)$, and here, one can extrapolate to the (finite) indices $i(\Phi)$ and $I(\Phi)$ as well.


67. CMB 2001 (vol 44 pp. 121)

Wojciechowski, Michał
A Necessary Condition for Multipliers of Weak Type $(1,1)$
Simple necessary conditions for weak type $(1,1)$ of invariant operators on $L(\rr^d)$ and their applications to rational Fourier multiplier are given.

Categories:42B15, 42B20

68. CMB 2000 (vol 43 pp. 355)

Kelly, Brian P.
A Dimension-Free Weak-Type Estimate for Operators on UMD-Valued Functions
Let $\T$ denote the unit circle in the complex plane, and let $X$ be a Banach space that satisfies\break Burkholder's UMD condition. Fix a natural number, $N \in \N$. Let $\od$ denote the reverse lexicographical order on $\Z^N$. For each $f \in L^1 (\T^N,X)$, there exists a strongly measurable function $\wt{f}$ such that formally, for all $\bfn \in \Z^N$, $\Dual{{\wt{f}}} (\bfn) = -i \sgn_\od (\bfn) \Dual{f} (\bfn)$. In this paper, we present a summation method for this conjugate function directly analogous to the martingale methods developed by Asmar and Montgomery-Smith for scalar-valued functions. Using a stochastic integral representation and an application of Garling's characterization of UMD spaces, we prove that the associated maximal operator satisfies a weak-type $(1,1)$ inequality with a constant independent of the dimension~$N$.


69. CMB 2000 (vol 43 pp. 330)

Hare, Kathryn E.
Maximal Operators and Cantor Sets
We consider maximal operators in the plane, defined by Cantor sets of directions, and show such operators are not bounded on $L^2$ if the Cantor set has positive Hausdorff dimension.

Keywords:maximal functions, Cantor set, lacunary set
Categories:42B25, 43A46

70. CMB 2000 (vol 43 pp. 63)

Iosevich, Alex; Lu, Guozhen
Sharpness Results and Knapp's Homogeneity Argument
We prove that the $L^2$ restriction theorem, and $L^p \to L^{p'}$, $\frac{1}{p}+\frac{1}{p'}=1$, boundedness of the surface averages imply certain geometric restrictions on the underlying hypersurface. We deduce that these bounds imply that a certain number of principal curvatures do not vanish.


71. CMB 2000 (vol 43 pp. 17)

Bak, Jong-Guk
Multilinear Proofs for Convolution Estimates for Degenerate Plane Curves
Suppose that $\g \in C^2\bigl([0,\infty)\bigr)$ is a real-valued function such that $\g(0)=\g'(0)=0$, and $\g''(t)\approx t^{m-2}$, for some integer $m\geq 2$. Let $\Gamma (t)=\bigl(t,\g(t)\bigr)$, $t>0$, be a curve in the plane, and let $d \lambda =dt$ be a measure on this curve. For a function $f$ on $\bR^2$, let $$ Tf(x)=(\lambda *f)(x)=\int_0^{\infty} f\bigl(x-\Gamma(t)\bigr)\,dt, \quad x\in\bR^2 . $$ An elementary proof is given for the optimal $L^p$-$L^q$ mapping properties of $T$.

Categories:42A85, 42B15

72. CMB 1999 (vol 42 pp. 463)

Hofmann, Steve; Li, Xinwei; Yang, Dachun
A Generalized Characterization of Commutators of Parabolic Singular Integrals
Let $x=(x_1, \dots, x_n)\in\rz$ and $\dz_\lz x=(\lz^{\az_1}x_1, \dots,\lz^{\az_n}x_n)$, where $\lz>0$ and $1\le \az_1\le\cdots \le\az_n$. Denote $|\az|=\az_1+\cdots+\az_n$. We characterize those functions $A(x)$ for which the parabolic Calder\'on commutator $$ T_{A}f(x)\equiv \pv \int_{\mathbb{R}^n} K(x-y)[A(x)-A(y)]f(y)\,dy $$ is bounded on $L^2(\mathbb{R}^n)$, where $K(\dz_\lz x)=\lz^{-|\az|-1}K(x)$, $K$ is smooth away from the origin and satisfies a certain cancellation property.

Keywords:parabolic singular integral, commutator, parabolic $\BMO$ sobolev space, homogeneous space, T1-theorem, symbol

73. CMB 1999 (vol 42 pp. 344)

Koldobsky, Alexander
Positive Definite Distributions and Subspaces of $L_p$ With Applications to Stable Processes
We define embedding of an $n$-dimensional normed space into $L_{-p}$, $0
Categories:42A82, 46B04, 46F12, 60E07

74. CMB 1999 (vol 42 pp. 198)

Guadalupe, José J.; Pérez, Mario; Varona, Juan L.
Commutators and Analytic Dependence of Fourier-Bessel Series on $(0,\infty)$
In this paper we study the boundedness of the commutators $[b, S_n]$ where $b$ is a $\BMO$ function and $S_n$ denotes the $n$-th partial sum of the Fourier-Bessel series on $(0,\infty)$. Perturbing the measure by $\exp(2b)$ we obtain that certain operators related to $S_n$ depend analytically on the functional parameter $b$.

Keywords:Fourier-Bessel series, commutators, BMO, $A_p$ weights

75. CMB 1999 (vol 42 pp. 37)

Christensen, Ole
Operators with Closed Range, Pseudo-Inverses, and Perturbation of Frames for a Subspace
Recent work of Ding and Huang shows that if we perturb a bounded operator (between Hilbert spaces) which has closed range, then the perturbed operator again has closed range. We extend this result by introducing a weaker perturbation condition, and our result is then used to prove a theorem about the stability of frames for a subspace.

   1 2 3 4    

© Canadian Mathematical Society, 2018 :