1. CMB Online first
 Wang, Lian Daniel

A Multiplier Theorem on Anisotropic Hardy Spaces
We present a multiplier theorem on anisotropic
Hardy spaces. When $m$ satisfies the anisotropic, pointwise Mihlin
condition, we obtain boundedness of the multiplier operator $T_m
: H_A^p (\mathbb R^n) \rightarrow H_A^p (\mathbb R^n)$, for the range of $p$
that depends on the eccentricities of the dilation $A$ and the
level of regularity of a multiplier symbol $m$. This extends
the classical multiplier theorem of Taibleson and Weiss.
Keywords:anisotropic Hardy space, multiplier, Fourier transform Categories:42B30, 42B25, 42B35 

2. CMB Online first
3. CMB Online first
 Sickel, Winfried; Yang, Dachun; Yuan, Wen; Zhuo, Ciqiang

Characterizations of BesovType and TriebelLizorkinType Spaces via Averages on Balls
Let $\ell\in\mathbb N$ and $\alpha\in (0,2\ell)$. In this article,
the authors establish
equivalent characterizations
of Besovtype spaces, TriebelLizorkintype
spaces and BesovMorrey spaces via the sequence
$\{fB_{\ell,2^{k}}f\}_{k}$ consisting of the difference between
$f$ and
the ball average $B_{\ell,2^{k}}f$. These results give a way
to introduce Besovtype spaces,
TriebelLizorkintype spaces and BesovMorrey spaces with any
smoothness order
on metric measure spaces. As special cases, the authors obtain
a new characterization of MorreySobolev spaces
and $Q_\alpha$ spaces with $\alpha\in(0,1)$, which are of independent
interest.
Keywords:Besov space, TriebelLizorkin space, ball average, CalderÃ³n reproducing formula Categories:42B25, 46E35, 42B35 

4. CMB 2016 (vol 60 pp. 131)
5. CMB Online first
 Liu, Feng; Wu, Huoxiong

Endpoint Regularity of Multisublinear Fractional Maximal Functions
In this paper we investigate
the endpoint regularity properties of the multisublinear
fractional maximal operators, which include the multisublinear
HardyLittlewood maximal operator. We obtain some new bounds
for the derivative of the onedimensional multisublinear
fractional maximal operators acting on vectorvalued function
$\vec{f}=(f_1,\dots,f_m)$ with all $f_j$ being $BV$functions.
Keywords:multisublinear fractional maximal operators, Sobolev spaces, bounded variation Categories:42B25, 46E35 

6. CMB 2016 (vol 59 pp. 834)
 Liao, Fanghui; Liu, Zongguang

Some Properties of TriebelLizorkin and Besov Spaces Associated with Zygmund Dilations
In this paper, using CalderÃ³n's
reproducing formula and almost orthogonality estimates, we
prove the lifting property and the embedding theorem of the TriebelLizorkin
and Besov spaces associated with Zygmund dilations.
Keywords:TriebelLizorkin and Besov spaces, Riesz potential, CalderÃ³n's reproducing formula, almost orthogonality estimate, Zygmund dilation, embedding theorem Categories:42B20, 42B35 

7. CMB 2016 (vol 59 pp. 528)
 Jahan, Qaiser

Characterization of Lowpass Filters on Local Fields of Positive Characteristic
In this article, we give necessary and sufficient conditions
on a function to be a lowpass filter on a local field $K$ of
positive characteristic associated to the scaling function for
multiresolution analysis of $L^2(K)$. We use probability and
martingale methods to provide such a characterization.
Keywords:multiresolution analysis, local field, lowpass filter, scaling function, probability, conditional probability and martingales Categories:42C40, 42C15, 43A70, 11S85 

8. CMB 2016 (vol 59 pp. 497)
9. CMB 2016 (vol 59 pp. 521)
 Hare, Kathryn; Ramsey, L. Thomas

The Relationship Between $\epsilon$Kronecker Sets and Sidon Sets
A subset $E$ of a discrete abelian group is called $\epsilon
$Kronecker if
all $E$functions of modulus one can be approximated to within
$\epsilon $
by characters. $E$ is called a Sidon set if all bounded $E$functions
can be
interpolated by the Fourier transform of measures on the dual
group. As $%
\epsilon $Kronecker sets with $\epsilon \lt 2$ possess the same
arithmetic
properties as Sidon sets, it is natural to ask if they are Sidon.
We use the
Pisier net characterization of Sidonicity to prove this is true.
Keywords:Kronecker set, Sidon set Categories:43A46, 42A15, 42A55 

10. CMB 2015 (vol 59 pp. 62)
 Feng, Han

Uncertainty Principles on Weighted Spheres, Balls and Simplexes
This paper studies the uncertainty principle for spherical
$h$harmonic expansions on the unit sphere of $\mathbb{R}^d$ associated
with a weight function invariant under a general finite reflection
group, which
is in full analogy with the classical Heisenberg inequality.
Our proof is motivated by a new decomposition of the DunklLaplaceBeltrami
operator on the weighted sphere.
Keywords:uncertainty principle, Dunkl theory Categories:42C10, 42B10 

11. CMB 2015 (vol 59 pp. 104)
 He, Ziyi; Yang, Dachun; Yuan, Wen

LittlewoodPaley Characterizations of SecondOrder Sobolev Spaces via Averages on Balls
In this paper, the authors characterize secondorder Sobolev
spaces $W^{2,p}({\mathbb R}^n)$,
with $p\in [2,\infty)$ and $n\in\mathbb N$ or $p\in (1,2)$ and
$n\in\{1,2,3\}$, via the Lusin area
function and the LittlewoodPaley $g_\lambda^\ast$function in
terms of ball means.
Keywords:Sobolev space, ball means, Lusinarea function, $g_\lambda^*$function Categories:46E35, 42B25, 42B20, 42B35 

12. CMB 2015 (vol 58 pp. 877)
 Zaatra, Mohamed

Generating Some Symmetric Semiclassical Orthogonal Polynomials
We show that if $v$ is a regular semiclassical form
(linear functional), then the symmetric form $u$ defined by the
relation
$x^{2}\sigma u = \lambda v$,
where $(\sigma f)(x)=f(x^{2})$ and the odd
moments of $u$ are $0$, is also
regular and semiclassical form for every
complex $\lambda $ except for a discrete set of numbers depending
on $v$. We give explicitly the threeterm recurrence relation
and the
structure relation coefficients of the orthogonal polynomials
sequence associated with $u$ and the class of the form $u$ knowing
that of $v$. We conclude with an illustrative example.
Keywords:orthogonal polynomials, quadratic decomposition, semiclassical forms, structure relation Categories:33C45, 42C05 

13. CMB 2015 (vol 59 pp. 211)
 Totik, Vilmos

Universality Under SzegÅ's Condition
This paper presents a
theorem on universality on orthogonal polynomials/random matrices
under a weak local condition on the weight function $w$.
With a new inequality for
polynomials and with the use of fast decreasing polynomials,
it is shown that an approach of
D. S. Lubinsky is applicable. The proof works
at all points which are Lebesguepoints both
for the weight function $w$ and for $\log w$.
Keywords:universality, random matrices, Christoffel functions, asymptotics, potential theory Categories:42C05, 60B20, 30C85, 31A15 

14. CMB 2015 (vol 58 pp. 757)
15. CMB 2015 (vol 58 pp. 507)
 Hsu, MingHsiu; Lee, MingYi

VMO Space Associated with Parabolic Sections and its Application
In this paper we define $VMO_\mathcal{P}$ space associated with
a family $\mathcal{P}$ of parabolic sections and show that the
dual of $VMO_\mathcal{P}$ is the Hardy space $H^1_\mathcal{P}$.
As an application, we prove that almost everywhere convergence
of a bounded sequence in $H^1_\mathcal{P}$ implies weak* convergence.
Keywords:MongeAmpere equation, parabolic section, Hardy space, BMO, VMO Category:42B30 

16. CMB 2015 (vol 58 pp. 808)
 Liu, Feng; Wu, Huoxiong

On the Regularity of the Multisublinear Maximal Functions
This paper is concerned with the study of
the regularity for the multisublinear maximal operator. It is
proved that the multisublinear maximal operator is bounded on
firstorder Sobolev spaces. Moreover, two key pointwise
inequalities for the partial derivatives of the multisublinear
maximal functions are established. As an application, the
quasicontinuity on the multisublinear maximal function is also
obtained.
Keywords:regularity, multisublinear maximal operator, Sobolev spaces, partial deviative, quasicontinuity Categories:42B25, 46E35 

17. CMB 2014 (vol 58 pp. 432)
 Yang, Dachun; Yang, Sibei

Secondorder Riesz Transforms and Maximal Inequalities Associated with Magnetic SchrÃ¶dinger Operators
Let $A:=(\nablai\vec{a})\cdot(\nablai\vec{a})+V$ be a
magnetic SchrÃ¶dinger operator on $\mathbb{R}^n$,
where $\vec{a}:=(a_1,\dots, a_n)\in L^2_{\mathrm{loc}}(\mathbb{R}^n,\mathbb{R}^n)$
and $0\le V\in L^1_{\mathrm{loc}}(\mathbb{R}^n)$ satisfy some reverse
HÃ¶lder conditions.
Let $\varphi\colon \mathbb{R}^n\times[0,\infty)\to[0,\infty)$ be such that
$\varphi(x,\cdot)$ for any given $x\in\mathbb{R}^n$ is an Orlicz function,
$\varphi(\cdot,t)\in {\mathbb A}_{\infty}(\mathbb{R}^n)$ for all $t\in (0,\infty)$
(the class of uniformly Muckenhoupt weights) and its uniformly critical upper type index
$I(\varphi)\in(0,1]$. In this article, the authors prove that
secondorder Riesz transforms $VA^{1}$ and
$(\nablai\vec{a})^2A^{1}$ are bounded from the
MusielakOrliczHardy space $H_{\varphi,\,A}(\mathbb{R}^n)$, associated with $A$,
to the MusielakOrlicz space $L^{\varphi}(\mathbb{R}^n)$. Moreover, the authors
establish the boundedness of $VA^{1}$ on $H_{\varphi, A}(\mathbb{R}^n)$. As applications, some
maximal inequalities associated with $A$ in the scale of $H_{\varphi,
A}(\mathbb{R}^n)$ are obtained.
Keywords:MusielakOrliczHardy space, magnetic SchrÃ¶dinger operator, atom, secondorder Riesz transform, maximal inequality Categories:42B30, 42B35, 42B25, 35J10, 42B37, 46E30 

18. CMB 2014 (vol 58 pp. 19)
 Chen, Jiecheng; Hu, Guoen

Compact Commutators of Rough Singular Integral Operators
Let $b\in \mathrm{BMO}(\mathbb{R}^n)$ and $T_{\Omega}$ be the singular
integral operator with kernel $\frac{\Omega(x)}{x^n}$, where
$\Omega$ is homogeneous of degree zero, integrable and has mean
value zero on the unit sphere $S^{n1}$. In this paper, by Fourier
transform estimates and approximation to the operator $T_{\Omega}$
by integral operators with smooth kernels, it is proved that if
$b\in \mathrm{CMO}(\mathbb{R}^n)$ and $\Omega$ satisfies a certain
minimal size condition, then the commutator generated by $b$ and
$T_{\Omega}$ is a compact operator on $L^p(\mathbb{R}^n)$ for
appropriate index $p$. The associated maximal operator is also
considered.
Keywords:commutator,singular integral operator, compact operator, maximal operator Category:42B20 

19. CMB 2014 (vol 58 pp. 144)
20. CMB 2014 (vol 57 pp. 834)
 Koh, Doowon

Restriction Operators Acting on Radial Functions on Vector Spaces Over Finite Fields
We study $L^pL^r$ restriction estimates for
algebraic varieties $V$ in the case when restriction operators act on
radial functions in the finite field setting.
We show that if the varieties $V$ lie in odd dimensional vector
spaces over finite fields, then the conjectured restriction estimates
are possible for all radial test functions.
In addition, assuming that the varieties $V$ are defined in even
dimensional spaces and have few intersection points with the sphere
of zero radius, we also obtain the conjectured exponents for all
radial test functions.
Keywords:finite fields, radial functions, restriction operators Categories:42B05, 43A32, 43A15 

21. CMB 2013 (vol 57 pp. 463)
 Bownik, Marcin; Jasper, John

Constructive Proof of Carpenter's Theorem
We give a constructive proof of Carpenter's Theorem due to Kadison.
Unlike the original proof our approach also yields the
real case of this theorem.
Keywords:diagonals of projections, the SchurHorn theorem, the Pythagorean theorem, the Carpenter theorem, spectral theory Categories:42C15, 47B15, 46C05 

22. CMB 2013 (vol 57 pp. 254)
 Christensen, Ole; Kim, Hong Oh; Kim, Rae Young

On Parseval Wavelet Frames with Two or Three Generators via the Unitary Extension Principle
The unitary extension principle (UEP) by Ron and Shen yields a
sufficient condition for the construction of Parseval wavelet frames with
multiple generators. In this paper we characterize the UEPtype wavelet systems that
can be extended to a Parseval wavelet frame by adding just one UEPtype wavelet
system. We derive a condition that is necessary for the extension of a UEPtype
wavelet system to any Parseval wavelet frame with any number of generators, and
prove that this condition is also sufficient to ensure that an extension
with just two generators is possible.
Keywords:Bessel sequences, frames, extension of wavelet Bessel system to tight frame, wavelet systems, unitary extension principle Categories:42C15, 42C40 

23. CMB 2013 (vol 56 pp. 729)
 Currey, B.; Mayeli, A.

The Orthonormal Dilation Property for Abstract Parseval Wavelet Frames
In this work we introduce a class of discrete groups containing
subgroups of abstract translations and dilations, respectively. A
variety of wavelet systems can appear as $\pi(\Gamma)\psi$, where $\pi$ is
a unitary representation of a wavelet group and $\Gamma$ is the abstract
pseudolattice $\Gamma$. We prove a condition in order that a Parseval
frame $\pi(\Gamma)\psi$ can be dilated to an orthonormal basis of the
form $\tau(\Gamma)\Psi$ where $\tau$ is a superrepresentation of
$\pi$. For a subclass of groups that includes the case where the
translation subgroup is Heisenberg, we show that this condition
always holds, and we cite familiar examples as applications.
Keywords:frame, dilation, wavelet, BaumslagSolitar group, shearlet Categories:43A65, 42C40, 42C15 

24. CMB 2013 (vol 56 pp. 745)
 Fu, Xiaoye; Gabardo, JeanPierre

Dimension Functions of SelfAffine Scaling Sets
In this paper, the dimension function of a selfaffine generalized scaling set associated with an $n\times n$ integral expansive dilation $A$ is studied. More specifically, we consider the dimension function of an $A$dilation generalized scaling set $K$ assuming that $K$ is a selfaffine tile satisfying $BK = (K+d_1) \cup (K+d_2)$, where $B=A^t$, $A$ is an $n\times n$ integral expansive matrix with $\lvert \det A\rvert=2$, and $d_1,d_2\in\mathbb{R}^n$. We show that the dimension function of $K$ must be constant if either $n=1$ or $2$ or one of the digits is $0$, and that it is bounded by $2\lvert K\rvert$ for any $n$.
Keywords:scaling set, selfaffine tile, orthonormal multiwavelet, dimension function Category:42C40 

25. CMB 2012 (vol 56 pp. 801)
 Oberlin, Richard

Estimates for Compositions of Maximal Operators with Singular Integrals
We prove weaktype $(1,1)$ estimates for compositions of maximal
operators with singular integrals. Our main object of interest is the
operator $\Delta^*\Psi$ where $\Delta^*$ is Bourgain's maximal
multiplier operator and $\Psi$ is the sum of several modulated
singular integrals; here our method yields a significantly improved
bound for the $L^q$ operator norm when $1 \lt q \lt 2.$ We also consider
associated variationnorm estimates.
Keywords:maximal operator calderonzygmund Category:42A45 
